Embedding Multiple Meshes into a Crossed Cube

다중 메쉬의 교차큐브에 대한 임베딩

  • 김숙연 (한경대학교 컴퓨터공학과)
  • Published : 2009.10.15

Abstract

The crossed cube has received great attention because it has equal or superior properties compared to the hypercube that is widely known as a versatile parallel processing system. It has been known that disjoint two copies of a mesh of size $4{\times}2^m$ or disjoint four copies of a mesh of size $8{\times}2^m$ can be embedded into a crossed cube with dilation 1 and expansion 1 [Dong, Yang, Zhao, and Tang, 2008]. However, it is not known that disjoint multiple copies of a mesh with more than eight rows and columns can be embedded into a crossed cube with dilation 1 and expansion 1. In this paper, we show that disjoint $2^{n-1}$ copies of a mesh of size $2^n{\times}2^m$ can be embedded into a crossed cube with dilation 1 and expansion 1 where $n{\geq}1$ and $m{\geq}3$. Our result is optimal in terms of dilation and expansion that are important measures of graph embedding. In addition, our result is practically usable in allocating multiple jobs of mesh structure on a parallel computer of crossed cube structure.

교차큐브는 병렬처리 시스템의 상호연결망으로서 널리 알려진 하이퍼큐브와 많은 면에서 비슷하면서도 절반 정도의 지름을 가지는 등 개선된 망 성질들을 가지므로 각광 받아 왔다. 크기 $4{\times}2^m$인 메쉬의 복사본 두 개, 혹은 크기 $8{\times}2^m$인 메쉬의 복사본 네 개가 교차큐브에 연장율 1, 확장율 1로 임베딩 될 수 있음이 알려져 있다.[Dong, Yang, Zhao, and Tang, 2008]. 그러나 양변의 길이가 모두 8 보다 큰 메쉬 다수 개가 교차큐브에 연장율 1, 확장율 1로 임베딩될 수 있는지는 알려진 바가 없다. 이 논문에서는 크기 $2^n{\times}2^m$인 메쉬의 복사본 $2^{n-1}$개가 교차큐브에 연장율 1, 확장율 1로 임베딩될 수 있음을 보인다. $n{\geq}1$, $m{\geq}3$. 이 연구 결과는 연장율과 확장율이라는 주요 임베딩 측정 척도에서 최적이다. 또한 이 연구 결과는 메쉬 구조를 가지는 다수 개의 작업을 교차큐브 구조를 가지는 병렬 컴퓨터에 할당하는데 효과적으로 활용될 수 있다.

Keywords

References

  1. B. Monien and H. Sudborough, "Embedding one interconnection entwork in another," pp. 257-282, Springer-Verlag/Wien, 1990. Computing Supple mentum 7: Computational Graph Theory.
  2. A. Rosenberg, "Issues in the study of grahp embeddings," Lecture Notes in Computer Science, Springer-Verlag, New York, vol.100, pp.150-176, 1981.
  3. F. Berman and L. Snyder, "On mapping parallel algorithms into parallel architectures," J. Parallel Distrib. Comput., vol.4, pp. 439-458, 1987.
  4. V. Chaudhary and J. K. Aggarwal, "Generalized mapping of parallel algorithms onto parallel architectures," Proc. Int'l Conf. Parallel Processing, pp.137-141, Aug. 1990.
  5. S.L. Bezrukov, J. D. Chavez, L.H. Harper M.Rottger, and U.-P.Schroeder, "The congestion of n-cube layout on a rectangular grid," Discrete Math, vol.213, no.1-3, pp.13-19, Feb. 2002. https://doi.org/10.1016/S0012-365X(99)00162-4
  6. A. Matsubayashi, "VLSI layout of trees into grids of minimum width," IEICE Trans. Gundamentals, vol.E87-A, no.5, pp.1059-1069, May 2004.
  7. A. Patel, A. Kusalik, and C. McCrosky, "Areaefficient VLSI layouts for binary hypercubes," IEEE Trans. Computers, vol.49, no.2, pp. 160-169, Feb. 2000. https://doi.org/10.1109/12.833112
  8. Q. Dong, X. Yang, J. Zhao and Y. Y. Tang, "Embedding a family of disjoint 3D meshes into a crossed cube," Information Sciences, vol.178, Issue 11, pp. 2396-2405, Jung 2008. https://doi.org/10.1016/j.ins.2007.12.010
  9. C.-J. Lai and C.-H, Tsai, "Embedding a family of meshes into twisted cubes," Information Processing Letters, In Press, Accepted Manuscript, Available online 29, June, 2008.
  10. C. -P. Chang, T. -Y, Sung, and L. -H. Hsu, "Edge congestion and topological properties of crossed cubes," IEEE Trans. Parallel and Distributed Sytems, vol.11, no.1, pp.64-80, Jan.2000. https://doi.org/10.1109/71.824643
  11. K. Efe, "A variation on the hypercube with lower diameter," IEEE Trans. Computers, vol.40, no.11, pp.1312-1316, Nov.1991. https://doi.org/10.1109/12.102840
  12. K. Efe, "The crossed cube architecture for parallel computing," IEEE Trans. Parallel and Distributed Systems, vol.3, no.5, pp.513-524, Sept.-Oct. 1992 https://doi.org/10.1109/71.159036
  13. K. Efe, P.K. Blachwell, W. Slough, and T. Shiau, "Topological properties of the crossed cube architecture," Parallel Computing, vol.20, pp.1763-1775, 1994. https://doi.org/10.1016/0167-8191(94)90130-9
  14. J. Fan, "Diagnosability of crossed cubes under the comparison diagnosis model," IEEE Trans. Parallel and Distributed Systems, vol.13, no.10, pp.1099-1104, Oct.2002. https://doi.org/10.1109/TPDS.2002.1041887
  15. J. Fan, and X. Jia, "Edge-pancyclicity and path-embeddability of bijective connection graphs," Information Sciences, vol.178, Issue 2, pp. 340-351, Jan. 2008. https://doi.org/10.1016/j.ins.2007.08.012
  16. J. Fan and X. Lin, "The t=k-diagnosability of the BC graphs," IEEE Trans. Computers, vol.53, no.2, pp.176-184, Feb. 2005.
  17. P. Kulasinghe, "Connectivity of the crossed cube," Information Processing Letters, vol.61, pp.221-226, Jul. 1997. https://doi.org/10.1016/S0020-0190(97)00012-4
  18. W.-T.Huang, Y.-C.Chuang, J.M.Tan, and L.-H.Hsu, "On the fault-tolerant hamiltonicity of faulty crossed cubes," IEICE Trans. Fundamental, vol. E85-A, no.6, pp. 1359-1370, Jun. 2002.
  19. M.-C.Yang, T.-K.Li, J.J.M. Tan, and L.-H. Hsu, "Fault-tolerant cycle-embedding of crossed cubes," Information Processing Letters, vol.88, Issue 4, pp. 149-154, Nov. 2003. https://doi.org/10.1016/j.ipl.2003.08.007
  20. P. Kulasinghe and S. Bettayeb, "Embedding binary trees into crossed cubes," IEEE Trans. Computers, vol.44, no.7, pp.923-929, Jul. 1995. https://doi.org/10.1109/12.392850
  21. J. Fan, and X. Jia, "Embedding meshes into crossed cubes," Information Sciences, vol.177, Issue 15, pp. 3151-3160, 2007. https://doi.org/10.1016/j.ins.2006.12.010
  22. 김숙연, "메쉬의 교차큐브에 대한 임베딩", 한국정보처리학회논문지A, vol.15A, no.6, pp.301-308, 2008. https://doi.org/10.3745/KIPSTA.2008.15-A.6.301
  23. C.-H. Tsai, "Embedding of meshes in Mobius cubes," Theoretical Computer Science, Vol.401, Issues 1-3, pp. 181-190, Jul. 2008. https://doi.org/10.1016/j.tcs.2008.04.023