• Title/Summary/Keyword: Parallel Pumping

Search Result 31, Processing Time 0.022 seconds

Effect of Rib Arrangement on Heat Transfer in the Divergent Channel (확대 채널에서 리브 배열이 열전달에 미치는 효과)

  • Lee, Myung-Sung;Lee, Gyeong-Ju;Kim, Sang-Moon;Min, Se-Chan;Bae, Jae-Moon;Hwang, Jun-Su;Park, Cheol-O;Kim, Dong-Chan;Jung, Jung-Hyeon;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.35-40
    • /
    • 2017
  • The effects of the different rib geometries such as V-shaped continuous (case A), parallel broken (case B), and V-shaped broken (case C) ribs on the heat transfer and pressure drops in a divergent channel with $45^{\circ}$ inclined ribs on one wall or two walls are checked out. The top and bottom walls are adiabatic; two side walls are uniformly heated in the divergent rectangular channel. The tested Reynolds numbers are ranged from 22,000 to 75,000. The channel with two opposite walls inclined only has the length of test section of 1 m and the channel divergence ratio of $D_{ho}/D_{hi}=1.49$, corresponding to $1.43^{\circ}$ inclined walls. The results show in the identical pumping power that the V-shaped continuous rib (case A) with two ribbed walls is the greatest, but the parallel broken rib (case B) with one ribbed wall is the worst in the thermal performance.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Effect of Rib Angle on Thermal Performance in a Two Wall Convergent/Divergent Channel with Ribs on One Wall (양측면 수축/확대 사각채널에서 한면에 설치된 리브의 각도가 열성능에 미치는 효과)

  • Ahn, Soo Whan;Lee, Myung Sung;Bae, Sung Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.195-200
    • /
    • 2015
  • The thermal performance in the channels with two-wall rectangular convergent/divergent cross-sectional areas along the axial distance was investigated experimentally. The ribbed rectangular convergent/divergent channels were manufactured with a fixed rib height (e) = 10 mm and the ratio of rib spacing (p) to height (e) = 10. Three different parallel angled ribs (a = $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$) were each placed on the channel's one sided wall only. The convergent channel of $D_{ho}/D_{hi}=0.67$ and the divergent channel of $D_{ho}/D_{hi}=1.49$ were considered. The ribbed divergent channel produced better thermal performance than the ribbed convergent channel in three different restrictions; identical flow rate, identical pumping power, and identical pressure loss.

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF

A Study on Typical Rates of Water-use for Primary School, Middle School and High School Facilities (초.중.고등학교 시설의 급수 사용량에 대한 연구)

  • Kim, Kyu-Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.802-807
    • /
    • 2008
  • A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows; 1) On the whole, typical rates of water-use was founded out 15 L/stu. d in pirmary school, 10 L/stu. d in middle school and 30 L/stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour's in primary school, 7 hour's in middle school and 8 hour's in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking peak load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.

A Study on Typical Rates of Water-use for Primary School, Middle School and High School Facilities (초.중.고등학교 시설의 급수 사용량에 대한 연구)

  • Kim, Kyu-Saeng
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.510-515
    • /
    • 2007
  • A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows ; 1) On the whole, typical rates of water-use was founded out 15 L / stu. d in pirmary school, 10 L / stu. d in middle school and 30L / stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour's in primary school, 7 hour's in middle school and 8 hour's in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking pick load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.

  • PDF

Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data (배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법)

  • Kim, Gyoo-Bum;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.583-592
    • /
    • 2018
  • Recently, concern has arisen regarding the lowering of groundwater levels in the hinterland caused by the development of high-capacity radial collector wells in riverbank filtration areas. In this study, groundwater levels are estimated using Modflow software in relation to the water volume pumped by the radial collector well in Anseongcheon Stream. Using the water volume data, an artificial neural network (ANN) model is developed to determine the amount of water that can be withdrawn while minimizing the reduction of groundwater level. We estimate that increasing the pumping rate of the horizontal well HW-6, which is drilled parallel to the stream direction, is necessary to minimize the reduction of groundwater levels in wells OW-7 and OB-11. We also note that the number of input data and the classification of training and test data affect the results of the ANN model. This type of approach, which supplements ANN modeling with observed data, should contribute to the future groundwater management of hinterland areas.

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Relations between Electrical and Hydraulic Properties of Aquifer in the Ganam Area (가남지역 대수층의 전기적, 수리적 특성 사이의 관계)

  • 이기화;최병수;한원석
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.78-84
    • /
    • 1995
  • In 1983, 83 Wenner vertical electrical sounding(VES)s and 22 pumping tests had been carried out by Korea Agricultural Development Corporation(KADC) in Guam Myun, Yeoju Gun, Kyounggi Province. Also, 10 boreholes had been constructed in the area. Using these data electrical and hydraulic properties of aquifer in the Ganam area are investigated in this study. Assuming that the underground is 1-D, VES data are analyzed. Data analysis shows that the subsurface of study area can be interpreted as 4-layer structure and the 3rd layer which is regarded as aquifer has mean thickness of 10 m and mean resistivity of 506 ohm-m and rests on resistive bedrock. Under the circumstances, as most part of electric current flows parallel to the bedding, longitudinal unit conductance is an important parameter controlling VES curves and very closely correlates with transmissivity of aquifer in the study area. Thus, relation between longitudinal unit conductance and transmissivity is investigated in this study. Since resistivity and thickness of each layer are obtained from interpretation of VES data, the relations between transmissivity and resistivity, and between hydraulic conductivity and resistivity are also studied. Studies of such relations show that longitudinal conductance is proportional to transmissivity, and resistivity is inversely proportional to transmissivity and hydraulic conductivity.

  • PDF

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.