• Title/Summary/Keyword: Parallel Manipulators

Search Result 66, Processing Time 0.025 seconds

인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석 (Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network)

  • 류길하;정종대
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법 (A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

저자유도 평면 병렬형 기구의 강성 해석 (Stiffness Analysis of a Low-DOF Planar Parallel Manipulator)

  • 김한성
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.79-88
    • /
    • 2009
  • This paper presents the analytical stiffness analysis method for a low-DOF planar parallel manipulator. An n-DOF (n<3) planar parallel manipulator to which 1- or 2-DOF serial mechanism is connected in series may be used as a positioning device in planar tasks requring high payload and high speed. Differently from a 3-DOF planar parallel manipulator, an n-DOF planar parallel counterpart may be subject to constraint forces as well as actuation forces. Using the theory of reciprocal screws, the planar stiffness is modeled such that the moving platform is supported by three springs related to the reciprocal screws of actuations (n) and constraints (3-n). Then, the spring constants can be precisely determined by modeling the compliances of joints and links in serial chains. Finally, the stiffness of two kinds of 2-DOF planar parallel manipulators with simple and complex springs is analyzed. In order to show the effectiveness of the suggested method, the results of analytical stiffness analysis are compared to those of numerical stiffness analysis by using ADAMS.

로보트 매니퓰레이터의 동력학적 신경제어 구조 (Dynamic Neurocontrol Architecture of Robot Manipulators)

  • 문영주;오세영
    • 전자공학회논문지B
    • /
    • 제29B권8호
    • /
    • pp.15-23
    • /
    • 1992
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, two kinds of neurocontrol architectures for the dynamic control of robot manipulators are developed. One is based on a System Identification and Control scheme and the other is based on the Feedback-Error leaming scheme. Both of the proposed architectures use an inverse dynamic neurocontroller in parallel with a linear neurocontroller. The difference is that the first architecture uses the system identifier to get the signals used for training neurocontrollers, while the second architecture uses a properly defined energy function. Compared with the previous types of neurocontrollers which are using an inverse dynamic neurocontroller and a fixed PD gain controller, the proposed architectures not only eliminate the painful process of the fixed gain tuning but also exhibit superior peformances because the linear neurocontroller can adapt its gains according to the applied task. This superior performance is tested and verified through computer simulation of the dynamic control of the PUMA 560 arm.

  • PDF

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

근사역동역학을 이용한 스튜어트플랫폼의 위치제어 (Position Control of a Stewart Platform Using Approximate Inverse Dynamics)

  • 이세한;송재복;최우천;홍대희
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.993-1000
    • /
    • 2001
  • Configuration-dependent nonlinear coefficient matrices in the dynamic equation of robot manipulator impose computa- tional burden in real-time implementation of tracking control based on the inverse dynamics controller. However, parallel manipulators such as Stewart platform have relatively small workspace compared to serial manipulators. Based on the characteristics of small motion range. nonlinear coefficient matrices can be approxiamted to constant ones. The modeling errors caused by such approximation are compensated for by H-infinity controller that treats the modeling errors disturbance. The proposed inverse dynamics controller with approximate dynamics combined with H-infinity control shows good tracking performance even for fast tracking control in which computation of full inverse dynamics is not easy to implement.

  • PDF

기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석 (Direct Position Kinematics Solution For Casing Oscillator Using the Kinematic Inversion)

  • 백재호;배형섭;이은준;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.580-583
    • /
    • 2002
  • This paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators, which is convenient and intuitionistic to us. A class of 3-RSR parallel manipulator is considered here. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics. The closed-form solution contains two different meanings-analytical and real-time. So we reach the goal of practical application and control. A numerical example is also presented and are verified by an inverse kinematics analysis. It shows that the method has a practical value for real-time control.

  • PDF

병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석 (Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator)

  • 김은석;양현익
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.

Determination of the Actual Solution of the Forward Kinematics of 6-dof Parallel Manipulators

  • Song, Se-Kyong;Park, J.Y.;H.K. Sung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.78.2-78
    • /
    • 2002
  • $\textbullet$ Presents a new method to determine the actual solution of the forward kinematics based on the geometry of the 3-6 Platform with a 3-2-1 type. $\textbullet$ The method is simple and effective to deform me the actual solution.

  • PDF

미세수술용 매니퓰레이터의 개발을 위한 미세수술 작업 분석 (Analysis of microsurgery task for developing microsurgery manipulator)

  • 송세경;김완수;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1631-1634
    • /
    • 1997
  • Since surgery is usually a difficult task because of physiological tremor, eye strain, and tremor, contagious and radioactive hazard, it is necessary to develop micro-surgery telerobotic system using improved tools suitable for their specific tasks. Nowadays the growth of interest on microsurgery and medical applications of robotics has been so rapid. But the medical robots are only practical applications of the industrial robots. This paper identifies five general areas of advanced microsurgery based on the current technological background and expertise, and analyzes the motion, tool and accuracy with respect to microsurgery task, and proposed the criteria to evaluate micro-surgical manipulator. The analysis of microusrgery can be heplful to clarify some basic concept and design of micro-surgical manipulators. With these data we will alos propose an efficient in-parallel-platform manipulator having special kinematic structrue structure suitable for microsurgery.

  • PDF