• 제목/요약/키워드: Parallel Learning

검색결과 289건 처리시간 0.026초

Hybrid-Feature Extraction for the Facial Emotion Recognition

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo;Jeong, In-Cheol;Ham, Ho-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1281-1285
    • /
    • 2004
  • There are numerous emotions in the human world. Human expresses and recognizes their emotion using various channels. The example is an eye, nose and mouse. Particularly, in the emotion recognition from facial expression they can perform the very flexible and robust emotion recognition because of utilization of various channels. Hybrid-feature extraction algorithm is based on this human process. It uses the geometrical feature extraction and the color distributed histogram. And then, through the independently parallel learning of the neural-network, input emotion is classified. Also, for the natural classification of the emotion, advancing two-dimensional emotion space is introduced and used in this paper. Advancing twodimensional emotion space performs a flexible and smooth classification of emotion.

  • PDF

Character Extraction Algorithm from Scenery Images by Parallel and Local Processing

  • Iwakata, Satoshi;Ajioka, Yoshiaki;Hagiwara, Masafumi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.54-57
    • /
    • 2003
  • In this paper, we propose an algorithm extracting character regions from scenery images. This algorithm works under a severe constraint: each pixel of a result image must be derived from only information of their neighbor pixels. This constraint is very important for a low cost device like a mobile camera. The proposed algorithm is represented by the local and parallel image processing. It has been tested for 100 scenery images. A result shows that the proposed algorithm can extract character regions at a rate of more than 90%. The result was obtained without learning any template images. the algorithm is very useful.

  • PDF

Simulation of a CIM Workflow System Using Parallel Virtual Machine (PVM)

  • Chang-Ouk Kim
    • 한국시뮬레이션학회논문지
    • /
    • 제5권2호
    • /
    • pp.13-24
    • /
    • 1996
  • Workflow is an ordered sequence of interdependent component data activities each of which can be executed on an integrated information system by accessing a remote information system. In our previous research [4], we proposed a distributed CIM Workflow system which consists of a workflow execution model called DAF-Net and an agent-based information systems called AIMIS. Given a component data activity, there needs an interaction protocol among agents which allocates the component data activity to a relevant information systems exist. The objective of this research is to propose and test two protocols: ARR(Asynchronous Request and Response)protocol and NCL(Negotiation with Case based Learning) protocol. To test the effectiveness of the protocols, we applied the PVM(Parallel Virtual Machine) software to simulate the distributed CIM Workflow system. PVM provides a distributed computing environment in which users can run different software processes in different computers while allowing communication among the processes.

  • PDF

클러스터링 기법을 이용한 비선형 공정의 병렬구조 모델링 (Parallel Structure Modeling of Nonlinear Process Using Clustering Method)

  • 박춘성;최재호;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.383-386
    • /
    • 1997
  • In this paper, We proposed a parallel structure of the Neural Network model to nonlinear complex system. Neural Network was used as basic model which has learning ability and high tolerence level. This paper, we used Neural Network which has BP(Error Back Propagation Algorithm) model. But it sometimes has difficulty to append characteristic of input data to nonlinear system. So that, I used HCM(hard c-Means) method of clustering technique to append property of input data. Clustering Algorithms are used extensively not only to organized categorize data, but are also useful for data compression and model construction. Gas furance, a sewage treatment process are used to evaluate the performance of the proposed model and then obtained higher accuracy than other previous medels.

  • PDF

유클리드 기하의 고유한 성질로서의 삼각형 넓이 공식에 대한 재음미 (A Re-Examination of the Area formula of triangles as an invariant of Euclidean geometry)

  • 최영기;홍갑주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제45권3호
    • /
    • pp.367-373
    • /
    • 2006
  • This study suggests that it is necessary to prove that the values of three areas of a triangle, which are obtained by the multiplication of the respective base and its corresponding height, are the same. It also seeks to deeply understand the meaning of Area formula of triangles by exploring some questions raised in the analysis of the proof. Area formula of triangles expresses the invariance of congruence and additivity on one hand, and the uniqueness of parallel line, one of the characteristics of Euclidean geometry, on the other. This discussion can be applied to introducing and developing exploratory learning on area in that it revisits the ordinary thinking on area.

  • PDF

Connection Machine CM-2상에서 신경망군(群)의 병렬 구현 (Parallel Implementation of A Neural Network Ensemble on the Connection Machine CM-2)

  • 김대진
    • 전자공학회논문지C
    • /
    • 제34C권1호
    • /
    • pp.28-41
    • /
    • 1997
  • This paper describes a parallel implementation of a neurla network ensemble developed for object recognition on the connection machine CM-2. The implementation ensures that multiple networks are implemented simultaneously starting from different initial weights and all training samples are applied to each network by one sample per a copy of each network. When compared with a sequential implementation, this accelerates the computation speed by O(N.m.n) where N, m, and n are the network, respectively. The speedup in the computation time and the convergence characteristics of sthe modified backpropagation learning precedure were evaluated by two-dimensional object recognition problem.

  • PDF

신경망을 이용한 서보제어기의 자동조정 (Auto-tunning of a FLC using Neural Networks)

  • 연제근;염진호;남현도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1034-1036
    • /
    • 1996
  • In this paper, an adaptive fuzzy logic controller is presented for auto-tunning of the scaling factors by using learning capability of neural networks. The proposed scheme consists of the FLC which includes the PI-type FLC and PD-type FLC in parallel form and the neural network which learns scale factors of FLC. Computer simulations were performed to illustrate the effectiveness of a proposed scheme. A proposed FLC controller was applied to the second order system and velocity control of the brushless DC motors. For the design of the FLC, tracking error, change of error, and acceleration error are selected as input variables of the FLC and three seal e factors were used in the parallel-type FLC. This scheme can be used to reduce the difficulty in the selection of the scale factors.

  • PDF

다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법 (Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks)

  • 박상봉;박래정;박철훈
    • 한국통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2418-2425
    • /
    • 1994
  • 기울기를 따라가는 방식(gradient descent method)에 바탕을 둔 오류 역전파(EBP : Error Back Propagation) 방법이 가장 널리 사용되는 신경회로망의 학습 방법에서 문제가 되는 지역 최소값(local minima), 느린 학습 시간, 신경망 구조(structure), 그리고 초기의 연결 강도(interconnection weight) 등을 기존의 다층 신경 회로망에 지역적인 학습 능력을 가진 가우시안 포텔샵 네트워크(GPFN : Gaussian Potential Function Networks)를 병렬적으로 부가하여 해결함으로써 지역화된 오류 학습 패턴들이 나타내는 문제에 대하여 학습 성능을 향상시킬 수 잇는 새로운 학습 방법을 제시한다. 함수 근사화 문제에서 기존의 EBP 학습 방법과의 비교 실험으로 제안된 학습 방법이 보다 개선된 일반화 능력과 빠른 학습 속도를 가짐을 보여 그 효율성을 입증한다.

  • PDF

대규모 신경회로망 분산 GPU 기계 학습을 위한 Caffe 확장 (Extending Caffe for Machine Learning of Large Neural Networks Distributed on GPUs)

  • 오종수;이동호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권4호
    • /
    • pp.99-102
    • /
    • 2018
  • Caffe는 학술 연구용으로 널리 사용되는 신경회로망 학습 소프트웨어이다. 신경회로망 구조 결정에서 가장 중요한 요소에 GPU 기억 용량이 포함된다. 예를 들어 많은 객체 검출 소프트웨어는 신경회로망이 12GB 이하의 기억 용량을 사용하게 하여 하나의 GPU에 적합하게 설계되어 있다. 본 논문에서는 큰 신경회로망을 두 개 이상의 GPU에 분산 저장하여 12GB 이상의 기억 용량을 사용할 수 있게 Caffe를 확장하였다. 확장된 소프트웨어를 검증하기 위하여 3개 GPU를 가진 PC에서 최신 객체 검출 소프트웨어의 배치 크기에 따른 학습 효율을 실험하였다.

다양한 동작 학습을 위한 깊은신경망 구조 비교 (A Comparison of Deep Neural Network Structures for Learning Various Motions)

  • 박수환;이제희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.73-79
    • /
    • 2021
  • 최근 컴퓨터 애니메이션 분야에서는 기존의 유한상태기계나 그래프 기반의 방식들에서 벗어나 딥러닝을 이용한 동작 생성 방식이 많이 연구되고있다. 동작 학습에 요구되는 네트워크의 표현력은 학습해야하는 동작의 단순한 길이보다는 그 안에 포함된 동작의 다양성에 더 큰 영향을 받는다. 본 연구는 이처럼 학습해야하는 동작의 종류가 다양한 경우에 효율적인 네트워크 구조를 찾는것을 목표로 한다. 기본적인 fully-connected 구조, 여러개의 fully-connected 레이어를 병렬적으로 사용하는 mixture of experts구조, seq2seq처리에 널리 사용되는 순환신경망(RNN), 그리고 최근 시퀀스 형태의 데이터 처리를 위해 자연어 처리 분야에서 사용되고있는 transformer구조의 네트워크들을 각각 학습하고 비교한다.