• Title/Summary/Keyword: Parallel Decomposition

Search Result 186, Processing Time 0.025 seconds

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

Parallel Stratified and Rotating Turbulence Simulation based on MPI (MPI 기반의 병렬 성층${\cdot}$회전 난류 시뮬레이션)

  • Kim, Byung-Uck;Yang, Sung-Bong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • We describe a parallel implementation for the large-eddy simulation(LES) of stratified and rotating turbulence based on MPI. The parallelization strategy is specified by eliminating the tridiagonal solver with explicit method and by domain decompositions for solving the poisson equation. In this simulation we have run on CRAY-T3E under the message passing platform MPI with a various domain decomposition and the scalability of this parallel code of LES are also presented. The result shows that we can gain up to 16 times faster speed up on 64 processors with xyz-directional domain decomposition and scalable up to $128{\times}128{\times}$ which processing time is almost similar to that of $40{\times}40{\times}40$ on a single processor machine with a sequential code.

  • PDF

Computation of dilute polymer solution flows using BCF-RBFN based method and domain decomposition technique

  • Tran, Canh-Dung;Phillips, David G.;Tran-Cong, Thanh
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • This paper reports the suitability of a domain decomposition technique for the hybrid simulation of dilute polymer solution flows using Eulerian Brownian dynamics and Radial Basis Function Networks (RBFN) based methods. The Brownian Configuration Fields (BCF) and RBFN method incorporates the features of the BCF scheme (which render both closed form constitutive equations and a particle tracking process unnecessary) and a mesh-less method (which eliminates element-based discretisation of domains). However, when dealing with large scale problems, there appear several difficulties: the high computational time associated with the Stochastic Simulation Technique (SST), and the ill-condition of the system matrix associated with the RBFN. One way to overcome these disadvantages is to use parallel domain decomposition (DD) techniques. This approach makes the BCF-RBFN method more suitable for large scale problems.

Parallel Performance of Preconditioned Navier-Stokes Code on Myrinet Environment (Myrinet 환경에서 예조건화 Navier-Stokes 코드의 병렬처리 성능)

  • Kim M.-H.;Lee G. S.;Choi J.-Y.;Kim K. S.;Kim S.-L.;Jeung I.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.149-154
    • /
    • 2001
  • Parallel performance of a Myrinet based PC-cluster was tested and compared with a conventional Fast-Ethernet system. A preconditioned Navier-Stokes code was parallelized with domain decomposition technique, and used for the parallel performance test. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network topology. As was expected, Myrinet system shows a superior parallel performance to the Fast-Ethernet system even with a single network adpater for a dual processor SMP machine. A test for the dependency on problem size also shows that network communication speed is a crucial factor for parallelized computational fluid dynamics analysis and the Myrinet system is a plausible candidate for high performance parallel computing system.

  • PDF

Study on Calibration for Parallel-Typed Tilting Table (병렬기구형 틸팅 테이블의 보정에 관한 연구)

  • Kim, T.S.;Jung, J.W.;Kim, Y.H.;Park, K.W.;Lee, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1512-1517
    • /
    • 2003
  • This paper presents the calibration for the parallel typed tilting table. The calibration system needs only simple sensing device which is a digital indicator to measure the orientation of a table. The calibration algorithm is developed by a measurement operator. It eliminates the concern about the poor parameter observability due to a large number of parameters of parallel-mechanism. This paper uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of a observation matrix. The number of identifiable parameters is examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a Parallel-typed Tilting Table and all the necessary kinematic parameters are identifiable.

  • PDF

PARALLEL COMPUTATIONAL APPROACH FOR THREE-DIMENSIONAL SOLID ELEMENT USING EXTRA SHAPE FUNCTION BASED ON DOMAIN DECOMPOSITION APPROACH

  • JOO, HYUNSHIG;GONG, DUHYUN;KANG, SEUNG-HOON;CHUN, TAEYOUNG;SHIN, SANG-JOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.199-214
    • /
    • 2020
  • This paper describes the development of a parallel computational algorithm based on the finite element tearing and interconnecting (FETI) method that uses a local Lagrange multiplier. In this approach, structural computational domain is decomposed into non-overlapping sub-domains using local Lagrange multiplier. The local Lagrange multipliers are imposed at interconnecting nodes. 8-node solid element using extra shape function is adopted by using the representative volume element (RVE). The parallel computational algorithm is further established based on message passing interface (MPI). Finally, the present FETI-local approach is implemented on parallel hardware and shows improved performance.

An Adaptive Algorithm Using A Polyphase Subband Decomposition (다위상 서브밴드 분해를 이용한 적응 알고리즘)

  • 주상영;이동규;이두수
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.182-185
    • /
    • 2000
  • In this paper, we present a new adaptive filter structure which is based on polyphase decomposition of the filter to be adapted. This structure uses wavelet transform to acquire transform-domain coefficients of the input signal. With this coefficients RLS algorithm is used for adaptation. Particularly, using the polyphase parallel structure, we can trace the system which has very long impulse response with only increasing the subband, and show that computational savings can be achieved. The proposed structure was applied to system identification for performance estimation and compared with fullband adaptive filter.

  • PDF

BOUNDARY COLLOCATION FAST POISSON SOLVER ON IRREGULAR DOMAINS

  • Lee, Dae-Shik
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.27-44
    • /
    • 2001
  • A fast Poisson solver on irregular domains, based on bound-ary methods, is presented. The harmonic polynomial approximation of the solution of the associated homogeneous problem provides a good practical boundary method which allows a trivial parallel processing for solution evaluation or straightfoward computations of the interface values for domain decomposition/embedding. AMS Mathematics Subject Classification : 65N35, 65N55, 65Y05.

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

SEXTIC MOMENT PROBLEMS ON 3 PARALLEL LINES

  • Yoo, Seonguk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.299-318
    • /
    • 2017
  • Sextic moment problems with an infinite algebraic variety are still widely open. We study the problem with a single cubic column relation associated to 3 parallel lines in which the variety is infinite. It turns out that this specific column relation has a strong connection with moment problems that have a symmetric algebraic variety. We present more concrete solutions to some sextic moment problems with a symmetric variety.