• Title/Summary/Keyword: Parallel Coupled

Search Result 394, Processing Time 0.024 seconds

A Band Pass Filter with Feeding Structure Using π-Type Transmission Line (π-형 전송선 급전 구조를 갖는 대역 통과 필터)

  • Bae, Ju-Seok;Lim, Jong-Sik;Kim, Kwi-Soo;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This paper proposed the band pass filter(BPF) with feeding structure using $\pi$-type transmission line by means of transforming the input/output coupled-lines of the half wavelength parallel coupled-line BPF into K-inverter, then substituting $\pi$-type transmission line equivalence for K-inverter. The proposed method supplies solution with what the half wavelength parallel coupled-line BPF's input/output coupled-lines are realized. Also it can quite reduce efforts and time needed to optimize filter performance when is compared to reported method using tapped line structure because formulas is very simple and accurate. On the basic of the proposed method, the BPF with feeding structure using $\pi$-type transmission line has been designed and fabricated. The validity of proposed method was proven by the measured result.

A Parallel Coupled Line Band Pass Filter Using Defected Ground Structure Inverter (결함 기저면 구조 인버터를 이용한 평행 결합 선로 대역 통과 필터)

  • Kim, In-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • In this paper, the novel method is proposed to realize the parallel coupled line band pass filter using defected ground structure(DGS) inverter. This method provides simple solution which easily resolves the limit of line width happened due to high impedance on the occasion of designing filter composed of line inverter. On the basis of the proposed method and conventional method, the band pass filters haying 13.3% fractional bandwidth were designed and implemented. The measured data of two filters show usually good agreement with each other, but on the other hand the length of proposed filter become shorten about 15mm and the width of inverter line was expanded two times or more in comparison with conventional filter.

A Narrow Bandwidth Microstrip Band-Pass Filter with Symmetrical Frequency Characteristics

  • Jun, Dong-Suk;Lee, Hong-Yeol;Kim, Dong-Young;Lee, Sang-Seok;Nam, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.643-646
    • /
    • 2005
  • This letter proposes a band-pass filter (BPF) with two transmission zeros based on a combination of parallel coupling and end coupling of half-wave transmission lines. The fabricated BPF exhibited a narrow bandwidth and two transmission zeros near the pass-band due to the end-coupled and shielding waveguide. At the center operation frequency of 60 GHz, the 20 dB bandwidth of the BPF is 1.0 GHz, which is almost 2% of the center operation frequency, and the insertion loss is 3.12 dB. Two transmission zeros reach approximately 40 dB at 58.5 and 62.5 GHz. The simulation results almost agree with the measured results.

  • PDF

Band-Notched Ultra-Wideband Antenna with Asymmetric Coupled-Line for WLAN and X-Band Military Satellite

  • Lee, Jun-Hyuk;Sung, Young-Je
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.34-37
    • /
    • 2013
  • This paper presents a novel ultra-wideband (UWB) antenna that rejects narrow and broad bands and is suitable for wireless communications. The base of the proposed antenna has a circular patch that can cover the UWB frequency range (3.1~10.6 GHz). The interference issues caused by co-existence within the UWB operation frequency are overcome by a design that uses a parallel-coupled asymmetric dual-line with a circular monopole antenna. The proposed antenna showed a stable radiation pattern, realized gain and reflection coefficient lower than -10 dB across the UWB operation bandwidth except for 5.15~5.85 GHz and 7.25~8.4 GHz. The fabrication, simulation, and measurement results obtained for the proposed antenna were in good agreement with the expected values.

Analysis of Coupled Inductor for Interleaved PWM converter (인터리브드 PWM 컨버터에서의 Coupled Inductor 해석)

  • Shin, Dongsul;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Heeje
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.330-331
    • /
    • 2011
  • The interleaving method is usually used to reduce the ripple of output current of filter inductor in parallel operation of PWM DC/DC converter. Although the current ripple of filter inductor decreases, each current ripple of filter inductor is not decreased. In this study, the operation of interleaved buck converter with coupled inductor is analyzed in each operation mode. It is verified through experiment. The possibility of application to grid connected inverter with parallel operation is identified.

  • PDF

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.

Design of a Novel Lumped Element Backward Directional Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기 해석 및 설계)

  • 송택영;이상현;김영태;천창율;박준석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.157-160
    • /
    • 2002
  • In this paper, a novel lumped equivalent circuit for a conventional parallel directional coupler is proposed. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even-and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3㏈ and 10㏈ lumped element directional couplers at the center frequency of 100Mhz. Furthermore, a chip type directional coupler has been designed to fabricate with multilayer configurations by employing the Low Temperature CofiredCeramic (LTCC) process. Designed chip-type directional coupler has a 10㏈-coupling value at the center frequency of 2㎓. Excellent agreements between simulations and measurements on the designed directional couplers show the validity of this paper

  • PDF

Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter

  • Fathi, Esmaeil;Setoudeh, Farbod;Tavakoli, Mohammad Bagher
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.260-273
    • /
    • 2022
  • This study presents a novel multilayer structure of parallel coupled-line bandpass filtercentered at 2.42 GHz with a fractional bandwidth value of approximately 19.4%. The designed filter can suppress harmonics with an appropriate frequency response by incorporating different techniques based on the multilayer technique. A combination of different techniques such as radial microstrip stubs and defected ground structure (DGS) and defected microstrip structure techniques are employed to suppress harmonics up to 5f0. These techniques are used in two layers to suppress up to 5f0. In addition, in this study, the effects of different parameters, such as the width of slot-line DGS, the angle of diagonal line slots in the upper layer, and the air gap between the two layers on the filter performance, are investigated. To verify the correct circuit operation, the designed filter is implemented and tested. The measurement results of the proposed filter are compared with the simulation results.

The JFNK method for the PWR's transient simulation considering neutronics, thermal hydraulics and mechanics

  • He, Qingming;Zhang, Yijun;Liu, Zhouyu;Cao, Liangzhi;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.258-270
    • /
    • 2020
  • A new task of using the Jacobian-Free-Newton-Krylov (JFNK) method for the PWR core transient simulations involving neutronics, thermal hydraulics and mechanics is conducted. For the transient scenario of PWR, normally the Picard iteration of the coupled coarse-mesh nodal equations and parallel channel TH equations is performed to get the transient solution. In order to solve the coupled equations faster and more stable, the Newton Krylov (NK) method based on the explicit matrix was studied. However, the NK method is hard to be extended to the cases with more physics phenomenon coupled, thus the JFNK based iteration scheme is developed for the nodal method and parallel-channel TH method. The local gap conductance is sensitive to the gap width and will influence the temperature distribution in the fuel rod significantly. To further consider the local gap conductance during the transient scenario, a 1D mechanics model is coupled into the JFNK scheme to account for the fuel thermal expansion effect. To improve the efficiency, the physics-based precondition and scaling technique are developed for the JFNK iteration. Numerical tests show good convergence behavior of the iterations and demonstrate the influence of the fuel thermal expansion effect during the rod ejection problems.

A Characteristic Improvement for the Parallel Operation of Z-source Inverters (Z-소스 인버터의 병렬운전 특성 개선)

  • Kim, Yoon-Ho;Lee, Woog-Young;Seo, Kang-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.56-61
    • /
    • 2007
  • In this paper, a circulating current reduction approach for the parallel operation of fuelcell systems with Z-source inverters is investigated. The carrier phase shifted SPWM(Sinusoidal Pulse Width Modulation) is used as a modulation method since it has an advantage in reducing output current harmonics. However, when this technique is applied to the parallel operation of Z-source inverters, it additionally produces circulating currents. A coupled circulating current reactor is used to reduce circulating current generated by the parallel operation of Z-source inverters and to reduce output current harmonics. The proposed circulating current reduction approach using coupled circulating current reactors is verified through simulation and experiment.