• Title/Summary/Keyword: Parallel Axis

Search Result 516, Processing Time 0.033 seconds

Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model (유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측)

  • Won S. Y.;Kim Y. S.;Na K. H.;Takahashi Hiroshi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

4f spin dynamics in TbNi$_2$B$_2$C by $^{11}$B NMR

  • Lee, K.H.;Seo, S.W.;Kim, D.H.;Khang, K.H.;Seo, H.S.;Hwang, C.S.;Hong, K.S.;Cho, B.K.;Lee, W.C.;Lee, Moo-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.61-64
    • /
    • 2000
  • $^{11}$B NMR measurements have been performed to investigate local electronic structure and 4f spin dynamics for TbNi$_2$B$_2$C single crystal. $^{11}$B NMR spectra show three resonance peaks due to the quadrupolar interaction. Shift and linewidth are huge and strongly temperature-dependent. In addition, both are proportional to magnetic susceptibility, indicating that the hyperfine field at the boron site originates from the 4f spins of Tb. $^{11}$B NMR shift and relaxation rates show high anisotropy for field parallel and perpendicular to the c-axis. Anisotropy of the shift and the relaxation rates suggests that the hyperfine field perpendicular to the c-axis is larger.

  • PDF

Precision Analysis of the Depth Measurement System Using a Single Camera with a Rotating Mirror (회전 평면경과 단일 카메라를 이용한 거리측정 시스템의 정밀도 분석)

  • ;;;Chun Shin Lin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.11
    • /
    • pp.626-633
    • /
    • 2003
  • Theoretical analysis of the depth measurement system with the use of a single camera and a rotating mirror has been done. A camera in front of a rotating mirror acquires a sequence of reflected images, from which depth information is extracted. For an object point at a longer distance, the corresponding pixel in the sequence of images moves at a higher speed. Depth measurement based on such pixel movement is investigated. Since the mirror rotates along an axis that is in parallel with the vertical axis of the image plane, the image of an object will only move horizontally. This eases the task of finding corresponding image points. In this paper, the principle of the depth measurement-based on the relation of the pixel movement speed and the depth of objects have been investigated. Also, necessary mathematics to implement the technique is derived and presented. The factors affecting the measurement precision have been studied. Analysis shows that the measurement error increases with the increase of depth. The rotational angle of the mirror between two image-takings also affects the measurement precision. Experimental results using the real camera-mirror setup are reported.

Thickness-Driven Spin Reorientation Transition in Co/Pd(111); In Situ SMOKE Three-Dimensional Vector Magnetometry

  • Lee, Jeong-Won;Kim, Sang-Koog;Kim, Jonggeol;Jeong, Jong-Ryul;Ahn, Jae-Seok;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.287-296
    • /
    • 2000
  • We have developed a three-axis configurational in situ SMOKE apparatus by which three-dimensional vector magnetization reversal processes are studied for ultrathin Co films grown on a Pd (111) single crystal in the thickness range of spin-reorientation transition. This study provides a better understanding of magnetization reversal motions with the knowledge of 3 components of magnetization vector at the transition of an easy axis of magnetization from the film normal at 5 ML Co to in-plane at 6 ML Co (ML notes monolayer). For a 5.25 ML Co, it was observed that a slightly canted magnetization vector from the film normal rotated in the film plane under an applied field direction parallel to the film normal.

  • PDF

Extraction of Geomagnetic Field from KOMSAT-1 Three-Axis Magnetometer Data

  • Hwang, Jong-Sun;Lee, Sun-Ho;Min, Kyung-Duck;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.242-242
    • /
    • 2002
  • The Earth's magnetic field acquired from KOMPSAT-1's TAM (Three-Axis Magnetometer) between June 19th and 21st 2000 was analyzed. The TAM, one of the KOMPSAT-1's Attitude and Orbit Control Subsystems, plays an important role in determining and controlling the satellite's attitude. This also can provide new insight on the Earth's magnetic field. By transforming the satellite coordinate from ECI to ECEF, spherical coordinate of total magnetic field was achieved. These data were grouped into dusk (ascending) and dawn (descending) data sets, based on their local magnetic times. This partitioning is essential for performing 1-D WCA (Wavenumber Correlation Analysis). Also, this enhances the perception of external fields in the Kompsat-1's TAM magnetic maps that were compiled according to different local. The dusk and dawn data are processed independently and then merged to produce a total field magnetic anomaly map. To extract static and dynamic components, the 1-D and 2-D WCAs were applied to the sub-parallel neighboring tracks and dawn-dusk data sets. The static components were compared with the IGRF, the global spherical harmonic magnetic field model. The static and dynamic components were analyzed in terms of corefield, external, and crustal signals based on their origins.

  • PDF

The Crystal Structure of Cholesteryl Aniline

  • Park, Young-Ja;Kim, Sang-Soo;Lee, Seung-Bun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 1990
  • Cholesteryl aniline ($C_{33}H_{51}N$) is monoclinic, space group $P2_1$, with a = 9.020(3), b = 6.000(1), c = 27.130(9)${\AA},\;{\beta} = 98.22(2)^{\circ}$, Z = 2, Dc = 1.06 g/cm$^3$ and Dm = 1.04 g/cm$^3$. A diffraction data set was collected with Mo-$K_{\alpha}$ radiation (${\lambda} = 0.7107 {\AA}$) on a diffractometer with a graphite monochromator to a maximum 2${\theta}$ value of 50$^{\circ}$, by the ${\omega}-2{\theta}$ scan technique. The coordinates of the non-hydrogen atoms and their anisotropic temperature factors were refined by full-matrix least-squares methods to final R of 0.058. In cholesteryl group, bond distances were normal except in tail part, where high thermal vibration resulted in apparent shortening of the C-C distances. The crystal structure consists of bilayers of thickness $d_{001} = 27.13 {\AA}$, in each of which there is the tail to tail arrangement of molecules aligned in the unit cell with their long axes approximately parallel to the [104] axis. The two halves of the double layer are related to each other by the screw axis.

Thickness-Driven Spin Reorientation Transition in Co/Pd(111) : In Situ SMOKE Three-Dimensional Vector Magnetometry

  • Lee, Jeong-Won;Kim, Sang-Koog;Kim, Jonggeol;Jeong, Jong-Ryul;Ahn, Jae-Seok;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.53-56
    • /
    • 2001
  • We have developed a three-axis configurational in situ SMOKE apparatus by which three-dimensional vector magnetization reversal processes are studied for ultrathin Co films grown on a Pd (111) single crystal in the thickness range of spin reorientation transition. This study provides a better understanding of magnetization reversal motions with the knowledge of three components of the magnetization vector at the transition of an easy axis of magnetization from the film normal at 5 ML Co to in-plane at 6 ML Co (ML denotes monolayer). For a 5.25 ML Co, it was observed that a slightly canted magnetization vector from the film normal rotated in the film plane under an applied field direction parallel to the film normal.

  • PDF

HREM Analysis of Apatite Formation in Modified-Simulated Body Fluid Containing Bovine Serum Albumin (소 혈청 알부민이 함유된 유사체액 내에서 아파타이트의 생성에 대한 고분해능 전자현미경 분석)

  • Kim, Woo Jeong;Lee, Kap Ho;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Process of the hydroxyapatite (HA) formation on bioactive titanium metal prepared by NaOH treatment in a modified-simulated body fluid (mSBF) containing bovine serum albumin (BSA) was investigated by high resolution transmission electron microscope attached with energy dispersive X-ray spectrometer (EDX). The amorphous titanate, which was formed on titanium surface by NaOH treatment, combined with the calcium ions in the liquid to form an amorphous calcium titanite. With increasing of soaking time in the liquid, an amorphous calcium titanite combined with the phosphate ions to form an amorphous calcium phosphate with low Ca/P atomic ratio, and it grows as aggregates of plate (or needle)-like substance on titanium surface. The crystalline apatite layers, which are needle-shaped with the c axis parallel to the long axis, are formed in an amorphous calcium phosphate with further increase in soaking time. The formation of needle-shaped apatite layers can be explained by electrostatic effects and difference of concentration between calcium, phosphate, and albumin ions.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

Study on $CuInTe_2$ Single Crystals Growth and Characteristics(I) ($CuInTe_2$ 단결정 성장과 특성연구(I))

  • 유상하;홍광준
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.44-56
    • /
    • 1996
  • CuInTe2 synthesised in a horizontal electric furnace was found to be polycrystalline. Single crystals of CuInTe2 were grown with the vertical Bridgman technique. The structure, Hall effect of the crystals were measured in the temperature range 30 to 293K. Both the polycrystals and single crystals of CuInTe2 were tetragonal in structure. The lattice constants of the polycrytals were measured as a=6.168Å and c=12.499Å, with c/a=2.026, these of the single crystals were measured as a=6.186Å and c=12.453Å, with c/a=2.013. The growth plane of the oriented single crystals was confirmed to be a (112) plane from the back-reflection Laue patterns. The Hall effect of the CuInTe2 single crystals was measured with the method of van der Pauw The Hall data of the samples measured at room temperature showed a carrier concentration of 2.14×1023holes/m3, a conductivity of 739.58Ω-1m-1, and a mobility of 2.16×10 -2m 2/V·s for the sample perpendicular to the c-axis. Values of 1.51×1023holes/m3, 717.55Ω-1m-1, and 2.97×10-2 m2/V·s were obtained for the sample parallel to the c-axis. The Hall coefficients for the samples both perpendicular and parallel to the c-axis in the temperature range 30K to 293K were always positive values. Thus the CuInTe2 single crystal was determined to be a p-type semiconductor.

  • PDF