• 제목/요약/키워드: Parabolic problem

검색결과 130건 처리시간 0.029초

OPTIMAL CONTROL OF SYSTEMS OF PARABOLIC PDES IN EXPLOITATION OF OIL

  • Li, Chunfa;Feng, Enmin;Liu, Jinwang
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.247-259
    • /
    • 2003
  • Optimal control problem for the exploitaton of oil is investigated. The optimal control problem under consideration in this paper is governed by weak coupled parabolic PDEs and involves with pointwise state and control constraints. The properties of solution of the state equations and the continuous dependence of state functions on control functions are investigated in a suitable function space; existence of optimal solution of the optimal control problem is also proved.

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.

NOTE ON LOCAL ESTIMATES FOR WEAK SOLUTION OF BOUNDARY VALUE PROBLEM FOR SECOND ORDER PARABOLIC EQUATION

  • Choi, Jongkeun
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1123-1148
    • /
    • 2016
  • The aim of this note is to provide detailed proofs for local estimates near the boundary for weak solutions of second order parabolic equations in divergence form with time-dependent measurable coefficients subject to Neumann boundary condition. The corresponding parabolic equations with Dirichlet boundary condition are also considered.

EXTINCTION AND POSITIVITY OF SOLUTIONS FOR A CLASS OF SEMILINEAR PARABOLIC EQUATIONS WITH GRADIENT SOURCE TERMS

  • Yi, Su-Cheol
    • 충청수학회지
    • /
    • 제30권4호
    • /
    • pp.397-409
    • /
    • 2017
  • In this paper, we investigated the extinction, positivity, and decay estimates of the solutions to the initial-boundary value problem of the semilinear parabolic equation with nonlinear gradient source and interior absorption terms by using the integral norm estimate method. We found that the decay estimates depend on the choices of initial data, coefficients and domain, and the first eigenvalue of the Laplacean operator with homogeneous Dirichlet boundary condition plays an important role in the proofs of main results.

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.

NUMERICAL METHODS FOR RECONSTRUCTION OF THE SOURCE TERM OF HEAT EQUATIONS FROM THE FINAL OVERDETERMINATION

  • DENG, YOUJUN;FANG, XIAOPING;LI, JING
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1495-1515
    • /
    • 2015
  • This paper deals with the numerical methods for the reconstruction of the source term in a linear parabolic equation from final overdetermination. We assume that the source term has the form f(x)h(t) and h(t) is given, which guarantees the uniqueness of the inverse problem of determining the source term f(x) from final overdetermination. We present the regularization methods for reconstruction of the source term in the whole real line and with Neumann boundary conditions. Moreover, we show the connection of the solutions between the problem with Neumann boundary conditions and the problem with no boundary conditions (on the whole real line) by using the extension method. Numerical experiments are done for the inverse problem with the boundary conditions.