• Title/Summary/Keyword: Para rubber

Search Result 7, Processing Time 0.018 seconds

Feasibility of Group Risk Income Protection Insurance for Para Rubber in Thailand

  • DUANGMANEE, Krittiya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.621-628
    • /
    • 2020
  • The study investigates a promising sustainable crop-insurance risk mitigation plan, namely, Group Risk Income Protection (GRIP) insurance, for the cultivation of Para rubber, a crop for which Southern Thailand constitutes over half of the national harvested area, but which recently experienced a shift in prices and yields, substantially affecting farmers. The research takes as its starting point historical data covering the 2001-2018 period for this crop's cultivation in three of Thailand's Andaman South Coast provinces - Trang, Krabi, and Phangnga. The results indicate that, from a relatively high base in 2001, Trang's yields dropped sharply before a more gradual decline (apparently still ongoing), whereas those for Krabi and Phangnga followed a smoother downward trajectory throughout the period. Meanwhile, prices everywhere rose steadily before falling from 2011 onwards - a decrease that shows no signs of abating. The yield/price relationship was negative for one province and slightly positive for the other provinces. Furthermore, all provinces' Para rubber income initially grew continually but fell after 2011, with this trend seemingly persisting to this day. The paper's findings suggest that, after early moves to entrench GRIP insurance, it looks set to become a feasible option for Para rubber, making policy agreement details an interesting subject for subsequent investigations.

Investigation of Co-poly-para-aramid Fiber Dispersion in Chloroprene Rubber Matrix and Improvement of Dispersibility Through Fiber Surface Modification

  • Garam Park;Hyeri Kim;Gayeon Jeong;Dohyeong Kim;Seungchan Noh;Dajeong Gwon;Myung Chan Choi;Jaseung Koo
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • To produce a co-poly-para-aramid fiber (AF, Technora®)-reinforced neoprene rubber composite, dispersion of AF in a neoprene matrix is investigated. The AF is then surface-modified by mercerization and acetone, plasma, and silane treatments to improve dispersibility. Finally, an internal mixer process is used to disperse the surface-modified fibers in the neoprene rubber matrix.

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

Synthesis and Characterization of New Thermotropic Liquid Crystalline Polyurethanes with Naphthalene Moiety (나프탈렌기를 갖는 새로운 액정폴리우레탄의 합성 및 특성)

  • Lee, Jong-Baek;Lee, Kwang-Hyun
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.37-44
    • /
    • 2005
  • Novel polyurethanes containing no mesogenic unit were synthesized by the polyaddition reaction of para-type diisocyanates such as 2,5-tolylene diisocyanate (2,5-TDI) or 1,4-phenylene diisocyanate (1,4-PDI) with 2,6-bis(${\omega}$-hydroxyalkoxy)naphthalene (BHNm; m= 5, 6, 8, 11). Intrinsic viscosities of the polymers were in the range of 0.28-0.43 dL/g. The thermal properties of these polymers were studied by differential scanning calorimetry and polarizing microscopy. Polyurethanes prepared from BHNm and 2,5-TDI haying methyl substituent on the phenylene unit exhibited monotropic liquid crystallinity. However, in the series of polyurethanes prepared from 1,4-PDI and BHNm, no explicit mesomorphic behavior was observed by differential scanning calorimetry and polarizing microscopy.

Synthesis and Characterization of Liquid Crystalline Polyurethanes Containing Aromatic Ring Moiety (방향족 고리를 갖는 액정폴리우레탄의 합성 및 특성)

  • Lee, Jong-Baek
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Polyurethanes containing no mesogenic unit were prepared by polyaddition reaction of homo- and copolyurethanes based on para-type 1,4-phenylene diisocyanate (1,4-PDI), 2,6-bis($\omega$-hydroxypentoxy)naphthalene (BHN5) with 1,4-bis($\omega$-hydroxypentoxy)benzene (BHB5). All copolyurethanes showed monotropic liquid crystallinity, when measurements were performed under shearing. For example, a polyurethane Poly(50/50, mol%) with $[\eta]$=0.32 dL/g exhibited liquid crystallinity in the temperature range from $223^{\circ}C$ to $211^{\circ}C$ in the cooling stage. In contrast, two homopolyurethanes exhibited no explicit mesomorphic behavior, which was observed by DSC (Differental Scanning calorimeter) and measurement and polarized microscopic observation. The mesomorphic behavior of synthesized polyurethane was identified and characterized by differential scanning calorimetry, polarized optical microscope and X-ray.

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Relationship Between Noise-Related Risk Perception, Knowledge, and the Use of Hearing Protection Devices Among Para Rubber Wood Sawmill Workers

  • Thepaksorn, Phayong;Siriwong, Wattasit;Neitzel, Richard L.;Somrongthong, Ratana;Techasrivichien, Teeranee
    • Safety and Health at Work
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Background: The understanding of the relationship between risk perception, knowledge, and protective behaviors could play a major role in occupational risk control and management. Research exploring how workers perceive, recognize, and react to risks in different occupational settings is scarce in Thailand. The aim of this study was to assess the relationship of noise-related risk perceptions and knowledge to the use of hearing protective devices (HPDs) among sawmill workers in Thailand. Methods: Sawmill workers (n = 540) from four factories in Trang, Southern Thailand, participated in a questionnaire interview from December 2015 to January 2016. Descriptive statistics and linear regression models were used to explore the risk factors related to HPD use. Path diagram analysis was demonstrated and used to evaluate associations. Results: Risk perception was significantly correlated with HPD use (p < 0.01), HPD training (p = 0.01), and the number of years of work experience (p = 0.03). Sawmill workers were likely to use HPDs based on their risk perception and HPD training. However, HPD training was inversely correlated with age and the number of years of work experience. Conclusion: The study highlights the importance of risk perceptions and knowledge, and these factors should be emphasized in the design and implementation of any personal safety intervention program for sawmill workers.