• Title/Summary/Keyword: Paper strength

Search Result 9,626, Processing Time 0.04 seconds

Improvement of High Permittivity Pads for Areas with Generally Low Signal Sensitivity at 7T MRI (7T MRI에서 일반적으로 신호 감도가 낮은 영역에 대한 고유전율 패드 개선)

  • Yong-Tae, Kim;Hyeon-Man, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.761-769
    • /
    • 2022
  • Pads with high dielectric materials have been used in a variety of applications to locally improve the field sensitivity and homogeneity of RF pulses in clinical MRI studies. In this study, we aimed to improve such pads in consideration of the practical problems associated with the application of actual clinical images. A high permittivity pad to increase the attenuated B1 field strength was fabricated and tested in 7T MRI. Sim4Life simulation and experimental results show stronger and relatively uniform B1 near field. In order to improve the image quality in the whole cerebellum, known as a region with low sensitivity, a guide was made to reduce the mechanical change of the pad. In order to improve the wearing comfort, the pad was designed by dividing it into upper and lower parts. The facial pad showed an overall signal increase effect in areas such as the turbinate in the nasal cavity. Signal increase was expected in areas such as the frontal lobe and eyes, but the effect was either insignificant or it was difficult to see the effect in the imaging protocol. In conclusion, this paper showed a cerebellar-optimized pad with an improved nasal signal while maintaining its effectiveness.

Mechanism on Bulb Formation of Compaction Pile Depending on Materials (재료에 따른 다짐말뚝 구근 형성 메커니즘)

  • Choi, Jeong Ho;Lee, Min Jy;Falcon, Sen Sven;Park, Seong Jin;Choo, Yun Wook;Kim, Il Gon;Kim, Byeong Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.25-37
    • /
    • 2022
  • In this paper, a small-scale model testing system was developed using a series of small-scale model tests to analyze the mechanism of compaction pile formation and evaluate the quality of controlled grading aggregates proposed as an alternative material to the sand compaction pile (SCP) method and granular compaction pile (GCP). These are the most typical ground improvement methods in field practice, particularly for soft grounds. However, the SCP has faced difficulties due to the supply shortage of natural sand and the corresponding price surge of sand. The GCP is limited in marine soft grounds because of the failure occurring at the pile tip caused by excessive expansion of the deeper bulbs, leading to uneven bulb formation. The uniformity of compacted pile bulbs is critical to ensuring the bearing capacity and quality of the compaction pile. This study aims to evaluate the performance of the new material and controlled grading aggregates using small-scale model tests simulating field compaction process to investigate its potential application in comparison with SCP. The compaction piles are examined in four cases according to different materials used for compaction pile and clay strength. The compaction pile materials, which are made of sand and controlled grading aggregates, used in this study were compared to reveal the mechanism of the bulb creation. The experimental data confirm that the bulb formation quality of the traditional sand and the new material, controlled grading aggregates are comparable. The compaction pile made of controlled grading aggregates presents higher bearing capacity than that of marine sand.

Evaluation of the Bending Properties of Glulam with Different Cross-Section (집성재 단면구성에 따른 휨성능 평가)

  • Lee, Jun-Jae;Kim, Kwang-Mo;Han, Jae-Su;Kim, Jae-Keon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.65-71
    • /
    • 2003
  • In this paper, bending capacities of glulams with different configurations of cross-section were evaluated. These configurations included horizontal(BH), vertical(BVN), vertical with vertical plywood (BVV) and vertical combination of lamination with horizontal plywood(BVH). Full-scale bending tests were performed to investigate the effect of different section configurations on bending strength(MOR) and stiffness(MOE) of glulam. Compared with type BH, MOR of glulam with type BVN configuration was improved about 23%, which was considered to be caused by defect dispersion effect, while MOE of glulams with these two types of configurations were similar. Because MOE of plywood is generally smaller than that of solid wood laminar, MOE of type BVH glulam decreased about 15%, but in the case of type BVV glulam, MOR was improved without any reduction of MOE. The reason of this result could be undersood in the view of shear-reinforcement effect, which was verified from analysis of fracture mode. From the results of this study, it was concluded that bending capacity of glulam could be improved by proper section design, such as laminar arrangement and shear reinforcement.

Evaluation of Mechanical Characteristics and Concentration Target Layer Applicability of Silty Sand by Fines Content (실트질 모래의 세립분 함유율에 따른 역학적 특성 및 압밀 대상층 적용성 평가)

  • Jung-Meyon Kim;Min-Seo Kang;Jong-Joo Kim;Seung-Joo Lee;Young-Seok Kim;Chan-Young, Park;Yong-Seong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.37-46
    • /
    • 2023
  • In this paper, the physical properties, stress deformation and strength characteristics, density and permeability characteristics of silty sand (SM) by fines content were analyzed through indoor tests. also based on the results of the indoor tests, a compact analysis was performed according to the content of SM, and the applicability of SM ground to the compacted target layer was evaluated by comparing it with the measurement data of the actual problem site. As a result of indoor tests and compression analysis, SM changed its mechanical properties from sandy soil to viscous soil when the fine particle content was 35% or higher, and using field measurement data, SM was found to have a higher compression tendency than direct subsidence. Therefore, the mechanical characteristics of SM above Fc 35% are considered to be similar to that of viscous soil, which is different from the compression characteristics of the tendency of immediate subsidence to conventional sandy soil, so it is necessary to present the mechanical characteristics of SM through further research. The research findings highlight the importance of considering consolidation settlement in silty sand (SM) when evaluating soft soil conditions. These findings can aid in revising criteria for assessing weak ground conditions by providing essential engineering property data based on varying fines content in silty sand.

APPLICATION OF WIFI-BASED INDOOR LOCATION MONITORING SYSTEM FOR LABOR TRACKING IN CONSTRUCTION SITE - A CASE STUDY in Guangzhou MTR

  • Sunkyu Woo;Seongsu Jeong;Esmond Mok;Linyuan Xia;Muwook Pyeon;Joon Heo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.869-875
    • /
    • 2009
  • Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..

  • PDF

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Estimation Method of Key Block Size on a Large Scale Rock Slope by Simulation of 3-D Rock Joint System (3차원 절리계 모사를 통한 대규모 암반비탈면 파괴블록크기 추정방법)

  • Kim, Dong-Hee;Jung, Hyuk-Il;Kim, Seok-Ki;Lee, Woo-Jin;Ryu, Dong-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.97-107
    • /
    • 2007
  • Accurate evaluation of the slope stability by assuming failure block as the entire slope is considered to be apposite for the small scale slope, whereas it is not the case for the large scale slope. Hence, appropriate estimation of a failure block size is required since the safety factor and the joint strength parameters are the function of the failure block size. In this paper, the size of failure block was investigated by generating 3-dimensional rock joint system based on statistical data of joints obtained from research slope, such as joint orientation, spacing and 3-dimensional joint intensity. The result indicates that 33 potential failure blocks exist in research slope, as large as 1.4 meters at least and 38.7 meters at most, and average block height is 15.2 meters. In addition, the data obtained from 3 dimensional joint system were directly applicable to the probability analysis and 2 and 3 dimensional discontinuity analysis.

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Trends in Predicting Groutability Based on Correlation Analysis between Hydrogeological and Rock Engineering Indices: A Review (수리지질 및 암반공학 지수 간 상관분석을 통한 절리암반 내 그라우트 주입성 예측 연구 동향: 리뷰논문)

  • Kwangmin Beck;Seonggan Jang;Seongwoo Jeong;Seungwoo Jason Chang;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.307-322
    • /
    • 2023
  • Rock-mass grouting plays a crucial role in the construction of dams and deep caverns, effectively preventing seepage in the foundations, enhancing stability, and mitigating hazards. Most rock grouting is affected by hydrogeological and rock engineering indices such as rock quality designation (RQD), rock mass quality (Q-value), geological strength index (GSI), joint spacing (Js), joint aperture (Ap), lugeon value (Lu), secondary permeability index (SPI), and coefficient of permeability (K). Therefore, accurate geological analysis of basic rock properties and guidelines for grouting construction are essential for ensuring safe and effective grouting design and construction. Such analysis has been applied in dam construction sites, with a particular focus on the geological characteristics of bedrock and the development of prediction methods for grout take. In South Korea, many studies have focused on grout injection materials and construction management techniques. However, there is a notable lack of research on the analysis of hydrogeological and rock engineering information for rock masses, which are essential for the development of appropriate rock grouting plans. This paper reviews the current state of research into the correlation between the grout take with important hydrogeological and rock engineering indices. Based on these findings, future directions for the development of rock grouting research in South Korea are discussed.