• Title/Summary/Keyword: Paper plastic

Search Result 2,671, Processing Time 0.034 seconds

Analysis of 2-Dimensional Elasto-Plastic Stress by a Time-Discontinuous Variational Integrator of Hamiltonian (해밀토니안의 시간 불연속 변분적분기를 이용한 2차원 탄소성 응력파 해석)

  • Chol, S.S.;Huh, H.;Park, K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.263-266
    • /
    • 2008
  • This paper is concerned with the analysis of elasto-plastic stress waves in a mode I semi-infinite cracked solid subjected to Heaviside pulse load. This study adopts a time-discontinuous variational integrator based on Hamiltonian in order to reduce the numerical dispersive and dissipative errors. This also utilizes an integration scheme of the constitutive model with 2nd-order accuracy which is formulated on the strain space for a rate and temperature dependent material model. Finite element analyses of elasto-plastic stress waves are carried out in order to compare the accuracy between a conventional Galerkin method and the time- discontinuous variational integrator.

  • PDF

Assessment of Fatigue Crack Propagation Considering the Redistribution of Residual Stress due to Overload

  • Jang, Chang-Doo;Leem, Hyo-Kwan;Choi, Yeoung-Dal;Bang, Jun-Kee;So, Ha-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.2
    • /
    • pp.26-33
    • /
    • 2007
  • For the assessment of the retardation of fatigue crack propagation behavior due to overload, new FE analysis algorithms considering compressive residual stress redistribution near crack tip was proposed in this paper. The size of plastic zone near crack tip was obtained by elasto-plastic analysis and it was compared with Irwin's equation. The amount of residual stress redistribution was assessed by subsequent elasto-plastic analysis, and the difference of residual stress distributions between constant amplitude load and overload was obtained. In the analysis of fatigue crack propagation, the applied SIF range was evaluated by ASTM E647, and the effect of residual stresses on crack propagation was considered using the effective SIF concept. The test results of crack propagations were compared with the predicted data obtained by the analysis.

Nonlinear analysis of fibre-reinforced plastic poles

  • Lin, Z.M.;Polyzois, D.;Shah, A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.785-800
    • /
    • 1998
  • This paper deals with the nonlinear finite element analysis of fibre-reinforced plastic poles. Based on the principle of stationary potential energy and Novozhilov's derivations of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The formulations are applied to the fibre-reinforced plastic poles which are treated as conical shells. A semi-analytical finite element model based on the theory of shell of revolution is developed. Several aspects of the implementation of the geometric nonlinear analysis are discussed. Examples are presented to show the applicability of the nonlinear analysis to the post-buckling and large deformation of fibre-reinforced plastic poles.

A Numerical Model for Plastic Shrinkage Cracking of Concrete Slab (콘크리트 슬래브의 소성수축균열 해석모델)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.448-455
    • /
    • 2005
  • In this paper, an analytical model for estimation of the time at which the concrete surface begins to dry is introduced to predict whether or not plastic shrinkage cracks occur. First of all, the validity of a consolidation model for bleeding of cement paste proposed by Tan et al. is verified by comparing the analytical results with the experimental results, and used to evaluate the rate and amount of bleed water of concrete. Also an analytical model for evaporation of bleed water which considers the effect of the temperature variation of concrete surface due to hydration heat on the evaporation rate is proposed, and the experimental and analytical results are then compared to verify the validity of the introduced model. In advance, the time at which the concrete surface begins to dry is estimated using above two analytical models, and compared with the experimental results about the time at which plastic shrinkage cracks occur. From the comparison, it is verified that the proposed model can predict the occurrence of plastic shrinkage cracking with comparative precision.

  • PDF

The optimisation method of the elastic-plastic spatial grid structures

  • Karczewski, Jan
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.277-287
    • /
    • 2003
  • The low boundary of load carrying capacity of the elastic-plastic spatial grid structures depend on numerous values and their variability assumed in designing process. Analysed influence all this values in searching for optimal variant of the structure lead to too great problem even taking into consideration actual computational power we have in disposal. Therefore one can take only a few values which have greatest influence on the optimal choice. In optimal analysis of the elastic-plastic spatial grid structures the previously proposed method with subsequent modification (Karczewski 1980), (Karczewski, Barszcz and Donten 1996), (Karczewski and Donten 2001) as well as computer program which was worked out by Donten K. to make possible practical utilisation this method was employed. The paper deal with evaluation of influence dimensions of particular values for choice of optimal variant of the structure. One among this values is distribution of the struts in the structure.

A study on the fracture toughness evaluating method for cryogenic structural material (극저온용 구조재료의 파괴인성평가법에 관한 연구)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 1998
  • This paper was undertaken to develop the fracture toughness testing method using small and single specimen compared to the conventional method in evaluating elastic-plastic fracture toughness of the superconducting magnet structural material at cryogenic temperature. The elastic-plastic fracture toughness test was conducted by using the unloading compliance method recommended by ASTM E813-89 to accomplish the above purpose. And, the 20% side-grooved 0.5TCT and 1TCT specimens were used to evaluate the fracture toughness by using as possible as miniaturized CT specimen. The unloading compliance method was a very useful method in evaluating elastic-plastic fracture toughness at cryogenic temperature. It could be taken valid fracture toughness values by using 20% side-grooved 0.5TCT specimen recommended by ASTM E813-89.

Experimental Study for Plastic Shrinkage Cracking of Cellulose Fiber Reinforced Concrete (셀룰로우스섬유보강 콘크리트의 소성수축 균열에 관한 실험적 연구)

  • 원종필;박찬기;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.319-323
    • /
    • 1998
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, slabs for parking garages, and walls. One of the methods to reduce the adverse effect of plastic shrinkage cracking is to reinforced concrete with short randomly distributed fibers. The contribution of cellulose fiber to the plastic shrinkage crack reduction potential of cement composites and its evaluation are presented in this paper. The effects of differing amounts of fibers(0.9kg/㎥, 1.3kg/㎥, 1.5kg/㎥) were studied. The results of tests of the cellulose fiber reinforced concrete were compared with plain concrete and polypropylene fiber reinforced concrete. Results indicated that cellulose fiber reinforcement showed an ability to reduce the total area and maximum crack width significantly(as compared to plain concreted to plain concrete and polypropylene fiber concrete).

  • PDF

An Experimental Study on the Relocating Plastic Hinging Zones of Reinforced Concrete Beams Subjected to Cyclic Loads (반복하중을 받는 철근콘크리트 보의 소성힌지 이동에 관한 실험적 연구)

  • 김윤일;최창식;천영수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.77-82
    • /
    • 1989
  • In this paper an experimental approach of the relocation plastic hinging zones of nine reinforced concrete exterior beam-column subassemblages under cyclic loads was tried. The main parameters of the testing program were location of the plastic hinge, difference of the special reinforcement, inclined or intermediate layers of longitudinal reinforcement, applied maximum shear stress. The conclusions presented herein are based on the limited texts conducted. Inclined or intermediate layers of longitudinal reinforcement and extra top and bottom steel in the beam over a specific legnth can be used to move the beam plastic hinging zone away from the column face. But, for the use of intermediate layers of longitudinal reinforcement, sheat reinforcement detail need further investigation.

  • PDF

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

A Study on the Cutting characteristics of a plastic sheet including Friction (마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구)

  • Han Joohyun;Kim Dohyun;Kim Chungkyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF