• Title/Summary/Keyword: Paper factory

Search Result 967, Processing Time 0.031 seconds

A Study of Developing Guides for the Construction Site Quality Control of Porous Concrete (투수콘크리트 현장품질관리 지침서 개발에 관한 연구)

  • Ko, Eun-Jung;Goh, Eun-Joo;Seok, Ho-Joong;Lee, Seung-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.65-71
    • /
    • 2009
  • General criteria for the quality of porous concrete have not been established yet in Korea. And yet, pavement and construction have been performed. In this paper, guidelines on the construction site quality control of porous concrete were developed in order to establish criteria for resolving the issues and problems of porous concrete, to establish methods for improving poor performance, and to manage porous concrete more systematically. In addition, a guide for the construction site quality control of porous concrete, which was appropriate for reality, was developed by researching several quality control guides and maintenance at construction sites. The guide consists of a total of nine chapters such as Application Range, Overview, the Structure of Porous Concrete, the Design of Package Thickness, Package Materials for Porous Concrete, Construction Methods, Quality Assurance and Inspections, Construction Site Quality Control, and Maintenance. It describes quality control guidelines in all steps such as methods for transporting porous concrete from the factory to the construction site, cautions for construction work at construction sites, maintenance, and management. The Guide for the Construction Site Quality Control of Porous Concrete is expected to ensure the quality of porous concrete, to reduce national costs for quality assurance, and to help ensure the health and safety of Korean people.

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

A Study on the Forming Failure Inspection of Small and Multi Pipes (소형 다품종 파이프의 실시간 성형불량 검사 시스템에 관한 연구)

  • 김형석;이회명;이병룡;양순용;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, there has been an increasing demand for computer-vision based inspection and/or measurement system as a part of factory automation equipment. Existing manual inspection method can inspect only specific samples and has low measuring accuracy as well as it increases working time. Thus, in order to improve the objectivity and reproducibility, computer-aided analysis method is needed. In this paper, front and side profile inspection and/or data transfer system are developed using computer-vision during the inspection process on three kinds of pipes coming from a forming line. Straight line and circle are extracted from profiles obtained from vision using Laplace operator. To reduce inspection time, Hough Transform is used with clustering method for straight line detection and the center points and diameters of inner and outer circle are found to determine eccentricity and whether good or bad. Also, an inspection system has been built that each pipe's data and images of good/bad test are stored as files and transferred to the server so that the center can manage them.

Performance Analysis of a Stand-alone Brushless Doubly-fed Induction Generator Using a New T-type Steady-state Model

  • Liu, Yi;Xu, Wei;Zhi, Gang;Zhang, Junlin
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1027-1036
    • /
    • 2017
  • The brushless doubly-fed induction generator (BDFIG) is a new type of dual stator winding induction generator. In such a generator, both the power winding (PW) and the control winding (CW) are housed in the stator. This paper presents the performance characteristics of a stand-alone BDFIG operation system. A new T-type steady-state model of a BDFIG is proposed. This model is more suitable for the performance analysis of stand-alone BDFIGs than the conventional Π-type steady-state model and the simplified inner core steady-state model. The characteristics of the power flow and CW current are analyzed by detailed mathematical derivations on the basis of the proposed T-type steady-state model. The analysis results are verified by experiments, which are carried out on a prototype BDFIG. The results of the performance analysis contribute to simplifying the control circuit, improving the control performance, and selecting an appropriate BDFIG for actual industrial applications.

Suggestion of Test Apparatus for Reliability Evaluation of a Rotary Compressor with a Short-Cycle (로터리 압축기용 Short-Cycle 신뢰성 시험장치 제안)

  • Lee, Tae-Gu;Lee, Sang-Jae;Kim, Hyun-Woo;Kim, Sang-Hyun;Lee, Jae-Heon;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.584-589
    • /
    • 2006
  • In this paper, a test apparatus for reliability evaluation of a rotary compressor has been suggested with a short-cycle concept. $CO_2$ refrigerant is adopted for this cycle to avoid phase change during cycle operation. Evaporator is not necessary in short-cycle. Utilizing a short-cycle, the test apparatus was built on the purpose of evaluating the reliability of each rotary compressor on the conveyer belt of the factory. The primary validation of the test apparatus is discussed by analyzing the experimental heat balance data. Additional validation was performed through the overload continuous operation test where the wear rate of the $CO_2$ short-cycle was found to similar to that of the R22 normal-cycle. The reliability evaluation test apparatus with a short-cycle in present investigation was found simple and efficient in the view of reducing sample numbers, costs, and test time in analyzing the reliability of rotary compressors.

  • PDF

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

A Design of Small Size Sensor Data Acquisition and Transmission System (소형 센서 데이터 수집 및 전송 시스템 설계)

  • Lim, Joong-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.1
    • /
    • pp.136-141
    • /
    • 2019
  • In this paper, we describe the design of a small size data acquisition system with STM32 processor based on Cortex-M4. The system is used for the sensor devices to collect raw data on production lines at factory and send them to the server computer in real time. Also the system is designed to easily acquisite various kinds of data collected from various sensors with the digital signal input unit, the analog signal input unit, the digital signal output unit and the analog signal output unit This small data acquisition system will contribute to the improvement of the quality of precision products in the industrial field by collecting various data in real time and transmitting data at high speed.

Method for Industrial Distributed Network Management using SDN Controller Deployment (SDN Controller 배포를 이용한 산업 분산형 네트워크 관리 기법)

  • Park, Do Gun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.13-19
    • /
    • 2019
  • SDN is one of the most actively researched topics to solve traffic problems in communication. SDN implements multiple networks in a single physical network by virtualizing network resources through an advanced API. Network Function Virtualized (NFV) distributes network functions from hardware using software instant, virtualization technology to VNF. These features make network management easier and improve performance by virtualizing IP, routers, and so on. In this paper, we propose a method to control the traffic and provide the distributed controller effect of SDN through SDN distribution in the virtualized industrial network. It is expected that SDN distribution will be able to manage traffic more efficiently when using the proposed scheme.

Design and Analysis of A Pico Propeller Hydro Turbine Applied in Fish Farms using CFD and Experimental Method

  • Tran, Bao Ngoc;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2019
  • In this paper, a pico hydro turbine employing low head circulation water at fish farms is designed and evaluated. Due to the advantages of simple structures, small head requirements, and low-cost investment, the constant thickness propeller turbine is considered as a feasible solution. The design process based on the free vortex method is presented in full detail, and a 4-blade runner is built using BladeGen. The turbine performance is analyzed both numerically and via experimental methods. Despite slight differences, the results show similar trends between CFD simulations and experiments carried out on factory test-rigs in a wide range of working conditions. At the design flow rate, the turbine achieves the best efficiency of 70 %, generating 3.5 kW power when rotating at 420 rpm. The internal flow field, as well as the turbine's behavior, are investigated through the distribution of blade streamlines, pressure, and velocity around the runner. Moreover, the pressure coefficient on the blade surface at 3 span positions is plotted while the head loss for each simulation domain is calculated and displayed by charts.