• Title/Summary/Keyword: Paper Heat exchanger

Search Result 480, Processing Time 0.027 seconds

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

Performance analysis of R404A refrigeration system using R744 as secondary refrigerant (R744를 2차냉매로 사용하는 R404A용 냉동시스템의 성능 분석)

  • Oh, H.K.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, an analysis on performance and exergy of R404A refrigeration system using R744 secondary refrigerant was performed numerically to optimize the design for the operating parameters. The operating parameters considered in this study include subcooling and superheating degree, internal heat exchanger and compression efficiency, evaporation and condensation temperature in the R404A refrigeration cycle and temperature difference of cascade heat exchanger. The main results are summarized as follows : The COP(coefficient of performance) of R404A refrigeration system increases with increasing evaporation temperature. The evaporation capacity of R744 as secondary refrigerant increases with the increase in evaporation pressure of R744 secondary refrigeration. And the enthalpy in the evaporator outlet of R744 increases with the increasing evaporation pressure of R744 secondary refrigeration. Therefore, it is important to analysis for the relationship between COP of R404A refrigeration system and refrigeration capacity of R744. As cascade evaporation temperature increase, the exergy loss of condenser and compressor using R404A is the largest among all components. Therefore, the exergy loss in the condenser and compressor using R404A must be decreased to enhance the COP of R404A refrigeration system with R744 secondary refrigerant.

Study on the Development Trend of Pressurization System for Propulsion System of Launch Vehicle (발사체 추진기관 가압시스템 개발 사례 연구)

  • Shin, Dong-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.721-724
    • /
    • 2011
  • A system to pressurize propellants stored in propellant tanks is necessary to feed liquid-propellants into combustion devices at the required pressure and flowrate without having cavitation in turbo-pumps. A pressurization system can be categorized into pre-pressurization stage and main-pressurization stage. This report is regarding to a main-pressurization system. Pressurization methods for propellant tanks are divided into pressurant gas generating method and pressurant gas feeding method. One of pressurant gas generating methods uses the vaporized oxygen gas from cryogenic liquid oxygen and non-flammable gas. In this report, both advantages and disadvantages for pressurization methods and types of pressurization systems are compared. Especially the characteristics and principle of pressurization system using impulsive control strategy applied in launch vehicles are introduced. Additionally the structure, schematics, and specifications of heat exchanger, which is one of main units in pressurization system are also discussed. This paper can be utilized to generate the conceptual requirements and to design preliminary configuration of pressurization system during the development of launch vehicle.

  • PDF

Performance Test of 2 kW Class Reverse Brayton Refrigeration System (냉동능력 2 kW 급 역브레이튼 극저온 냉각시스템 성능시험)

  • KO, JUNSEOK;LEE, KEUN-TAE;PARK, SEONG-JE;KIM, JONGWOO;CHOO, SANGYOON;HONG, YONG-JU;IN, SEHWAN;PARK, JIHO;KIM, HYOBONG;YEOM, HANKIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.429-435
    • /
    • 2020
  • This paper describes the experimental study of reverse-Brayton refrigeration system for application to high temperature superconductivity electric devices and LNG re-liquefaction. The reverse-Brayton refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa, cooling capacity of 2 kW at 77 K, and neon as a working fluid. The refrigeration system is developed with multi scroll compressor, turbo expander and plate heat exchanger. From experiments, the performance characteristics of used components is measured and discussed for 77-120 K of operating temperature. The developed refrigeration system shows the cooling capacity of 1.23 kW at 77 K and 1.64 kW at 110 K.

A Study on the Optimal Conditions of friction Welding for JLF & STS304 Using AE Technique (AE기법을 이용한 JLF/STS304이종재료의 최적 마찰용접조건에 관한 연구)

  • Yoon, Han-Ki;Lee, Sang-Pill;Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.148-155
    • /
    • 2003
  • Japanese low activation terrific steel(JLF) is a good material for the parts of heat exchanger such as blanket and diverter. At first, JLF was developed as a candidate for structural materials in nuclear fusion applications. However, the development of the jointing technique of JLF steel to other materials is important for wide applications of this material to the industry fields. Recently the jointing technologies including diffusion bonding, brazing, roll bonding, explosive bonding and hot iso-static pressing have been studied for the heterogeneous materials of JLF-1 steel(Fe-9Cr-2W-V-Ta) and stainless steel(STS304). Friction welding is one of the most popular welding methods for two different kinds of materials. In this paper, the JLF-1 steel was jointed to SIS304 by friction welding method and the optimal conditions of the friction welding discussed. Acoustic emission was used as a nondestructive technique to evaluate the weld quality in processing.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils

  • Yoon, Seok;Lee, Seung-Rae;Go, Gyu-Hyun;Xue, Jianfeng;Park, Hyunku;Park, Dowon
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.79-98
    • /
    • 2014
  • This paper presents an experimental and numerical study on the evaluation of a thermal response test using a precast high-strength concrete (PHC) energy pile and a closed vertical system with W-type ground heat exchangers (GHEs). Field thermal response tests (TRTs) were conducted on a PHC energy pile and on a general vertical GHE installed in a multiple layered soil ground. The equivalent ground thermal conductivity was determined by using the results from TRTs. A simple analytical solution is suggested in this research to derive an equivalent ground thermal conductivity of the multilayered soils for vertically buried GHEs. The PHC energy pile and general vertical system were numerically modeled using a three dimensional finite element method to compare the results with TRTs'. Borehole thermal resistance values were also obtained from the numerical results, and they were compared with various analytical solutions. Additionally, the effect of ground thermal conductivity on the borehole thermal resistance was analyzed.

Performance Characteristics of New LNG Liquefaction Cycles with Temperature Differences in the Heat Exchangers (열교환기 온도차에 따른 새로운 LNG 액화사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, the performance of the $CO_2-C_2H_6-N_2$ cascade liquefaction cycle with respect to temperature differences in the LNG heat exchangers is analyzed theoretically using HYSYS software and then compared the COP(coefficient of performance) of the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ and $CO_2-N_2O-N_2$. In comparison of COP of three cycles, the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ showed the highest COP. And the liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In case of COP, the $C_3H_8-C_2H_4-C_1H_4$ cascade liquefaction cycle yields better COP. But, in terms of the environment and maintain, it is confirmed that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ provides favorable characteristics.

Performance Characteristics of Refrigeration and Air Conditioning System Using Hydrocarbon Refrigerants (탄화수소계 냉동공조 시스템의 성능특성에 관한 실험)

  • 이호생;이근태;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.728-734
    • /
    • 2004
  • Environmentally friendly refrigerants with zero ozone layer depletion potential are required to be used in refrigerators and air conditioners due to the difficulties related to ozone layer depletion and global warming. A rigorous study for the system performance with new refrigerants having zero ozone layer depletion potential is inevitable before adopting that as a new fluid. The HFC(Hydrofluorocarbon) potential has been recommended as alternatives. In this paper. system performance in the heat pump facilities were studied using R-290, R-600a. R-1270 as an environment friendly refrigerant. R-22 as a HCFC's refrigerant. The experimental apparatus has been set-up as a conventional vapor compression type heat Pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70mm with 1.315mm wall thickness is used for this investigation. The test results showed that the COP of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of COP was found in R-1270. The refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. The compressor work was obtained with the maximum value in R-1270 and the minimum one in R-22.

The development of ultrasonic transmitter to enhance the efficiency of heat transfer rate in boiler (보일러내 열 전달 효율 개선을 위한 초음파발신기 개발)

  • Heo, Pil-Woo;Lee, Yang-Lae;Lim, Eui-Su;Koh, Kwang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • Ultrasonic transmitter used for scale prevention in boiler or heat exchanger is composed of the magnetostrictive material which transforms electric energy into ultrasonic wave and the horn which amplifies generated ultrasonic wave and transfers it into medium loaded. In this paper, we have performed the shape design for magnetostrictive material and analyzed a few type of horns which amplify generated ultrasonic wave and found each solution theoretically. Final length of the horn has been determined by measuring the sound pressure in medium between theoretical value and experience data. At last we have given the results of our study for the effects of ultrasonic wave irradiated by manufactured ultrasonic transmitter on preventing scale deposition on test pipe under the similar condition to boiler.