• Title/Summary/Keyword: Paper Heat exchanger

Search Result 480, Processing Time 0.03 seconds

Numerical Analysis of the Effect of Rounded Tube at the Counter Flow Manifold on the Performance of a Heat Exchanger Used in High Temperature and High Pressure System (대향류 매니폴드 내의 튜브 라운드 적용에 따른 고온 고압 열교환기의 성능특성에 관한 수치적 연구)

  • Kim, Sang-Jo;Choi, Byoung-Ik;Kim, Kui-Soon;Son, Chang-Min;Ha, Man-Young;Jeong, Ji-Hwan;Go, Jeong-Sang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.47-55
    • /
    • 2011
  • The present paper deals with numerical analysis to investigate the effect of rounded tube on the pressure drop and heat transfer in a compact tubular heat exchanger designed for high temperature and high pressure system. The pressure drop and heat transfer in the tubular heat exchanger greatly depend on the location of rounded tubes. The effect of locations of the rounded tubes was also analyzed. Three different locations which were tube inlet, tube outlet, and inlet&outlet were considered. In this paper, the tube with a rounded inlet&outlet showed the minimum pressure drop with decreased heat transfer while the tube with a rounded outlet showed better characteristics of pressure drop and heat transfer compared with the results of original model.

Study on the Performance of Total Heat Exchanger with Rotating Porous Plates (다공형 전열판의 회전에 의한 열교환시스템의 성능에 관한 연구(Ⅰ) - 환기측과 외기측의 풍량 변화에 대하여 -)

  • Cho, D.H.;Lim, T.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-17
    • /
    • 2005
  • This paper reports an experimental study on the performance evaluation of air-to-air heat exchanger with rotary type newly developed in this study. Air flow rate is varied from 10 to 120 m3/h. The range of RPM of the porous rotating discs mounted inside the heat exchanger unit is 0 to 50. The temperature of the return air side is set by adjusting heat supply at heater. The material of the porous rotating discs is cooper and its thickness is 1.0 mm. The heat transfer rate increased with the increase in air flow rate. It was found that the heat transfer rate, as the temperature of the return air side was increased, was improved due to higher temperature difference. The heat exchange performance increased with the increase in the temperature of the return air side at the conditions of the same RPM. The sensible heat exchange efficiency was maximum 68 to 76 percent, and enthalpy exchange efficiency 64 to 74 percent.

  • PDF

Numerical Analysis Methods for Eddy Current Testing for Heat Exchanger Tube with Axi-symmetric Defects (열교환기 전열관의 결함에 대한 와전류 탐상 수치해석방법)

  • Kim, Chang-Wook;Seo, Jang-Won;Kim, Shin;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.831-833
    • /
    • 2000
  • In this paper, a numerical analysis algorithm of eddy current testing(ECT) for heat exchanger tube with axi-symmetric defects using finite element method(FEM) is presented. In the ECT FEM analysis, we used trianglular and rectangular elements for exact signal of ECT for variable shape of defects. This paper presents a systematic and efficient numerical analysis algorithm for ECT. We employ the LU decomposition and Cholesky method for solving the system matrix. This numerical analysis algorithm is effectively applied to heat exchanger tube with defects.

  • PDF

Prediction on Performance of Cascade Refrigeration System using Alternative Freon Refrigerants (대체 프레온계 냉매를 이용하는 이원 냉동시스템의 성능예측)

  • Roh, Geonsang
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • In this paper, cycle performance analysis of cascade refrigeration system using alternative FREON refrigerants are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooled and superheated degree, and evaporating and condensing temperature, temperature difference of cascade heat exchanger in cascade refrigeration system. The COP of cascade refrigeration system increases with the increasing subcooled degree, but there is no significant changes with the increasing superheated degree. The COP of cascade refrigeration system depends on evaporating and condensing temperatures of cascade heat exchanger. Therefore, subcooled degree, evaporating and condensing temperature of cascade heat exchanger using alternative FREON refrigerants have an effect on the COP of this system. In this paper, COP of cascade refrigeration system using R23 for low temperature system and R507A for high temperature system is higher 8 ~ 29 % than using R13 for low temperature system and R22 for high temperature system.

A Comparison of Performance on the Orthogonal and Refraction Heat Exchanger Shape in Air Ventilation System (환기시스템의 굴절 및 평판형 열교환기 형상에 따른 성능비교)

  • Hyeon, Hyeong-Ho;Jeong, Byeong-Ho;Kim, Ji-won;Lee, Kang-yeon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.281-287
    • /
    • 2019
  • Application of heat recovery system applying air supply and cexhaust ventilation device essential in energy management system for the optimum ventilation system utilization and energy saving. This is a key element of infrastructure technology for high-efficiency energy buildings, because it can save heating and cooling energy in winter and summer. In this paper, heat transfer efficiency was simulated using paper, plastic, and aluminum materials that was examined to compare heat exchanger performance under uniform flow conditions. We tested heat transfer efficiengy according to the shape of two of that, one is orthogonal and the other is refraction shape. Based on the simulation results, it is expected to contribute to the production of high performance heat exchanger with heat transfer performance and pressure loss.

Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles (축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

Performance Evaluation of Plate Heat Exchanger with Chevron Angle Variations (쉐브론 각도변화에 따른 판형 고온 용액열교환기의 성능평가)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho;Kim, Hyo-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.520-526
    • /
    • 2009
  • The objectives of this paper are to measure the heat transfer and pressure drop of the plate heat exchangers for absorption system applications. Three types of plate heat exchangers with different chevron angles are tested in the present experiment. Heat transfer and pressure drop performance of plate heat exchangers are measured in various operating conditions, and compared each other. The results show that the heat transfer rate of high theta ($120^{\circ}$) and mixed theta plate heat exchanger increases about 118% and 98% at the solution flow rate 350 kg/h compared to that of low theta ($60^{\circ}$), respectively. The effectiveness of high theta was evaluated about $0.53{\sim}0.85$ in this experimental range. The experimental correlations of the Nu and f were developed with error bands of ${\pm}7%$ and ${\pm}12%$.

Optimization of the Channel of a Plate Heat Exchanger wits Ribs (리브가 있는 판형 열교환기 관내부 최적화)

  • 이관수;양동근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • In this paper, the optimum shape and arrangement of ribs in the channel of a plate heat exchanger are studied. The following dimensionless geometric parameters of ribs are selected as design variables: rib height ($H_R$), angle of attack ($\beta$), rib pitch ($P_R$), rib distance (L) and aspect ratio of rib (AR). The optimization is performed by minimizing the objective function consisting of the Nusselt number and the friction factor. The optimal values of design variables are as follows: $H_R$=0.263, $\beta$=0.290, $P_R$=3.142, L: 3.954, AR=0.342. The pressure drop and the heat transfer of the optimum model, compared to those of the reference model, are increased by 15.1% and 41.6%, respectively.

Performance Evaluation of Finned Tube Heat Exchanger with Vortex Generators in a Low Reynolds Number Regime (레이놀즈 수가 낮은 영역에서 와류발생기를 적용한 핀-관 열교환기 성능평가)

  • Kwak Kyung-Min;Song Gil-Dal
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • The present paper reports the method for evaluation of heat-transfer performance of finned tube heat exchangers in a low Reynolds number regime (Re = $160\~800$) and also reports the data of heat transfer and pressure loss taken from a finned tube heat exchanger with/without vortex generators (VGs) installed as a heat-transfer enhancement device. The evaluation is based on the modified single blow method conducted in a specially designed low Reynolds number duct. Three different test core geometries, i.e., fin only, fin-tube without VGs and that with VGs, are studied here. The data of heat transfer and pressure loss taken from the fin only geometry agree well with the empirical correlations, thus validating the present method as used for low Reynolds number regime. The data taken from the finned tube geometries with and without VGs are presented and compared to examine the effect of VGs in the low Reynolds number regime.