Numerical Analysis of the Effect of Rounded Tube at the Counter Flow Manifold on the Performance of a Heat Exchanger Used in High Temperature and High Pressure System

대향류 매니폴드 내의 튜브 라운드 적용에 따른 고온 고압 열교환기의 성능특성에 관한 수치적 연구

  • 김상조 (부산대학교 대학원 항공우주공학과) ;
  • 최병익 (부산대학교 대학원 항공우주공학과) ;
  • 김귀순 (부산대학교 항공우주공학과) ;
  • 손창민 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부) ;
  • 정지환 (부산대학교 기계공학부) ;
  • 고정상 (부산대학교 기계공학부)
  • Received : 2011.10.31
  • Accepted : 2011.12.05
  • Published : 2011.12.30

Abstract

The present paper deals with numerical analysis to investigate the effect of rounded tube on the pressure drop and heat transfer in a compact tubular heat exchanger designed for high temperature and high pressure system. The pressure drop and heat transfer in the tubular heat exchanger greatly depend on the location of rounded tubes. The effect of locations of the rounded tubes was also analyzed. Three different locations which were tube inlet, tube outlet, and inlet&outlet were considered. In this paper, the tube with a rounded inlet&outlet showed the minimum pressure drop with decreased heat transfer while the tube with a rounded outlet showed better characteristics of pressure drop and heat transfer compared with the results of original model.

본 논문에서는 매니폴드 내의 튜브 라운드 적용에 따른 고온 고압 튜브형 열교환기에서의 압력강하와 열성능을 분석하기위해 전산해석을 수행하였다. 튜브형 열교환기에서의 압력강하와 열성능은 튜브라운드의 위치에 많은 영향을 받는다. 튜브 라운드에 따른 연구는 튜브 입구, 튜브 출구, 그리고 튜브 양쪽 세 가지 위치에 따라 수행하였다. 본 연구에서, 튜브 양쪽에 라운드를 적용한 경우에는 가장 낮은 압력강하와 감소된 열전달을 보였지만 튜브 출구에 라운드를 적용한 경우에는 압력강하와 열전달 모두 기본형상에 비하여 좋은 특성을 보였다.

Keywords

References

  1. S. Bock, W. Horn, J. Sieber, "Active core-A key technology for more environmentally friendly aero engines being investigated under the NEWAC program," 26th Congress of International Council of the Aeronautical Sciences, Paper ICAS, 2008
  2. M. K. Bassiouny, H. Martin, "Flow distribution and Pressure drop in Plate Heat Exchangers-I," Chemical Engineering Science, Vol. 39, No. 4, 1984, pp.693-700 https://doi.org/10.1016/0009-2509(84)80176-1
  3. S. H. Choi, S. Shin, and Y. I. Cho, "The effect of area ratio on the flow distribution in liquid cooling module manifolds for electronic packaging," Heat Mass Transfer, Vol. 20, No. 2, 1993, pp.221-234 https://doi.org/10.1016/0735-1933(93)90050-6
  4. A. L. London, G. Klopeer, S. Wolf, "Oblique flow Headers for Heat Exchangers," ASME Journal of Engineering Power, Vol. 90, Ser. A, 1968, pp.271-286 https://doi.org/10.1115/1.3609186
  5. O. Tonomura, S. Tanaka, M. Noda, M. Kano, S. Hasebe, I. Hashimiti, "CFD-based optimal design of manifold in plate-fin microdevices," Journal of Chemical Engineering, Vol. 101, 2004, pp.397-402 https://doi.org/10.1016/j.cej.2003.10.022
  6. A.R. Barbin, and J.B. Jones, "Turbulent Flow in the Inlet Region of a Smooth Pipe," Trans. ASME, Ser. D: Journal of Basic Engineering, 85, No. 1, 1963
  7. R. K. Shah, D. P. Sekulic, Fundamentals of heat exchanger design, 2003
  8. R. A. Bajura and JR. E. H. Jones, "Flow distribution Manifolds," Journal of Fluids engineering, Vol. 98, 1976, pp.654-666 https://doi.org/10.1115/1.3448441
  9. J. C. Tannehill, D. A. Anderson and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor and Francis., 1997
  10. T. Ma, M. Lin, M. Zeng, Y.P. Ji, Q.W. Wang, Numerical study of internally finned bayonet tubes in a high temperature bayonet heat exchanger with inner and outer fines, ASME Turbo expo 2101, GT2010-22360, 2010