• 제목/요약/키워드: Panel Data Regression

검색결과 853건 처리시간 0.022초

Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models

  • Lee, Jaejun;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.395-409
    • /
    • 2014
  • Data limited, partial, or incomplete are known as an ill-posed problem. If the data with ill-posed problems are analyzed by traditional statistical methods, the results obviously are not reliable and lead to erroneous interpretations. To overcome these problems, we propose a dual generalized maximum entropy (dual GME) estimator for panel data regression models based on an unconstrained dual Lagrange multiplier method. Monte Carlo simulations for panel data regression models with exogeneity, endogeneity, or/and collinearity show that the dual GME estimator outperforms several other estimators such as using least squares and instruments even in small samples. We believe that our dual GME procedure developed for the panel data regression framework will be useful to analyze ill-posed and endogenous data sets.

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

Inclusive Growth Analysis in Central Sulawesi, The Eastern Province of Indonesia 2015-2019

  • PRAKOSO, Andhika Dimas;AGUSTINA, Neli
    • Asian Journal of Business Environment
    • /
    • 제12권2호
    • /
    • pp.1-12
    • /
    • 2022
  • Purpose: This study aims to analyze the inclusive growth in Central Sulawesi Province, an eastern province of Indonesia, up to the districts/cities level. The inclusive growth is analyzed by using Ramos, Ranieri, and Lammens' index that has three indicators which are employment, poverty, and income inequality. Research design, data, and methodology: This study uses panel data of 13 districts/cities in Central Sulawesi Province from 2015 to 2019. The statistical regression used is the panel regression method to analyze the determinants of inclusive growth there. Results: The study found that the average inclusive growth of districts/cities in Central Sulawesi is increasing from the low-level in 2015 to mid-level in 2019. The panel's data regression using fixed effect model FGLS-SUR found Investment (GFCF), Road Infrastructure, HDI, and Processing Industry have a significant positive effect. Regional minimum wage (RMW) has a significant negative effect. Government Expenditure on Education and Health Function has no significant positive effect on inclusive growth. Conclusions: throughout the study period, gini coefficient and poverty rate is slowly decreasing, while employment to population ratio remains volatile in districts/cities of Central Sulawesi.

회귀나무 모형을 이용한 패널데이터 분석 (Panel data analysis with regression trees)

  • 장영재
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1253-1262
    • /
    • 2014
  • 회귀나무 (regression tree)는 독립변수로 이루어진 공간을 재귀적으로 분할하고 해당 영역에서 종속변수의 최선의 예측값을 찾고자 하는 비모수적 방법론이다. 회귀나무 모형이 제안된 이래 로지스틱 회귀나무모형이나 분위수 회귀나무모형과 같이 유연하고 다양한 모형적합을 위한 연구가 진행되어 왔다. 최근에 들어서는 Sela와 Simonoff (2012)의 RE-EM 알고리즘, Loh와 Zheng (2013)의 GUIDE 등 패널데이터와 관련하여 진일보한 나무모형 알고리즘도 제안되었다. 본 논문에서는 각 알고리즘을 소개하고 특징을 살펴보는 한편, 실험 데이터를 생성하여 평균제곱오차 (mean squared error)를 바탕으로 예측력을 비교하였다. 분석결과, RE-EM 알고리즘의 예측력이 상대적으로 우수하게 나타났다. 이 알고리즘을 통해 기업경기실사지수 업종별 패널자료를 분석한 결과 최근의 업황에 가장 큰 영향을 미치는 요소는 매출 실적으로 나타났으며 매출 상위 그룹의 경우 비제조업이 제조업에 비해 업황에 대한 판단이 긍정적인 것으로 나타났다.

Asymptotic Properties of the Disturbance Variance Estimator in a Spatial Panel Data Regression Model with a Measurement Error Component

  • Lee, Jae-Jun
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.349-356
    • /
    • 2010
  • The ordinary least squares based estimator of the disturbance variance in a regression model for spatial panel data is shown to be asymptotically unbiased and weakly consistent in the context of SAR(1), SMA(1) and SARMA(1,1)-disturbances when there is measurement error in the regressor matrix.

패널회귀모형에서 예측량의 효율에 관한 비교 (A Comparison of Predictors in a Panel Data Regression Model)

  • 정병철;조민화;송석헌
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.121-135
    • /
    • 2001
  • 본 논문에서는 이원오차성분을 가지는 패널회귀모형에서 미래시점에 대한 다양한 예측량들을 유도하고, 예측량들의 효율성을 모의실험을 통하여 비교하였다. 모의실험 결과, FGLS추정량을 이용한 예측량들은 참 GLS를 이용한 예측량과 효율성에서 서로 큰차이를 보이지 않았다. 또한 계산상 매우 복잡한 ML과 REML을 이용한 예측량과도 거의 비슷한 효율성을 보여주었다.

  • PDF

상대오차예측을 이용한 자동차 보험의 손해액 예측: 패널자료를 이용한 연구 (Predicting claim size in the auto insurance with relative error: a panel data approach)

  • 박흥선
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.697-710
    • /
    • 2021
  • 상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.

The Effect of First Observation in Panel Regression Model with Serially Correlated Error Components

  • Song, Seuck-Heun
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.667-676
    • /
    • 1999
  • We investigate the effects of omission of initial observations in each individuals in the panel data regression model when the disturbances follow a serially correlated one way error components. We show that the first transformed observation can have a relative large hat matrix diagonal component and a large influence on parameter estimates when the correlation coefficient is large in absolute value.

  • PDF

Asymptotic Distribution of the LM Test Statistic for the Nested Error Component Regression Model

  • Jung, Byoung-Cheol;Myoungshic Jhun;Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제28권4호
    • /
    • pp.489-501
    • /
    • 1999
  • In this paper, we consider the panel data regression model in which the disturbances have nested error component. We derive a Lagrange Multiplier(LM) test which is jointly testing for the presence of random individual effects and nested effects under the normality assumption of the disturbances. This test extends the earlier work of Breusch and Pagan(1980) and Baltagi and Li(1991). Further, it is shown that this LM test has the same asymptotic distribution without normality assumption of the disturbances.

  • PDF

LM Tests in Nested Serially Correlated Error Components Model with Panel Data

  • Song, Seuck-Heun;Jung, Byoung-Cheol;Myoungshic Jhun
    • Journal of the Korean Statistical Society
    • /
    • 제30권4호
    • /
    • pp.541-550
    • /
    • 2001
  • This paper considers a panel data regression model in which the disturbances follow a nested error components with serial correlation. Given this model, this paper derives several Lagrange Multiplier(LM) testis for the presence of serial correlation as well as random individual effects, nested effects, and for existence of serial correlation given random individual and nested effects.

  • PDF