• Title/Summary/Keyword: Panax. Korean ginseng

Search Result 2,498, Processing Time 0.031 seconds

Thermotolerant Transgenic Ginseng (Panax ginseng C.A. Meyer) by Introducing Isoprene Synthase Gene through Agrobacterium tumefaciens-mediated Transformation

  • Kim, Ok-Tae;Hyun, Dong-Yun;Bang, Kyong-Hwan;Jung, Su-Jin;Kim, Young-Chang;Shin, Yu-Su;Kim, Dong-Hwi;Kim, Swon-Won;Seong, Nak-Sul;Cha, Seon-Woo;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • The cost of conventional cultivation of ginseng (Panax ginseng C.A. Meyer) is very expensive, because shadow condition should be maintained during cultivation periods owing to inherently weak plant for high-temperature. Therefore, application of plant biotechnology may be possible to overcome these difficulties caused by conventional breeding of ginseng. Transgenic plants were produced via Agrobacterium tumefaciens Gv3101, both carrying the binary plasmid pBI121 mLPISO with nptII and Iso (isoprene synthase) gene. Integration of the transgenes into the P. ginseng nuclear genome was confirmed by PCR analysis using nptII primers and Iso primers. RT-PCR result also demonstrated the foreign isoprene synthase gene in three transgenic plant lines (T1, T3, and T5) which was expressed at the transcriptional level. When whole plants of transgenic ginseng were exposed to high temperature at $46^{\circ}C$ for 1 h, a non-transformed plant was wilted from heat shock, whereas a transgenic plant appeared to remain healthy. We suggest that the introduction of exogenous isoprene synthase is considered as alternative methods far generating thermotolerance ginseng.

Discrimination of American ginseng and Asian ginseng using electronic nose and gas chromatography-mass spectrometry coupled with chemometrics

  • Cui, Shaoqing;Wu, Jianfeng;Wang, Jun;Wang, Xinlei
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.85-95
    • /
    • 2017
  • Background: American ginseng (Panax quinquefolius L.) and Asian ginseng (Panax ginseng Meyer) products, such as slices, have a similar appearance, but they have significantly different prices, leading to widespread adulteration in the commercial market. Their aroma characteristics are attracting increasing attention and are supposed to be effective and nondestructive markers to determine adulteration. Methods: The aroma characteristics of American and Asian ginseng were investigated using gas chromatography-mass spectrometry(GC-MS) and an electronic nose (E-nose). Their volatile organic compounds were separated, classified, compared, and analyzed with different pattern recognition. Results: The E-nose showed a good performance in grouping with a principle component analysis explaining 94.45% of variance. A total of 69 aroma components were identified by GC-MS, with 35.6% common components and 64.6% special ingredients between the two ginsengs. It was observed that the components and the number of terpenes and alcohols were markedly different, indicating possible reasons for their difference. The results of pattern recognition confirmed that the E-nose processing result is similar to that of GC-MS. The interrelation between aroma constituents and sensors indicated that special sensors were highly related to some terpenes and alcohols. Accordingly, the contents of selected constituents were accurately predicted by corresponding sensors with most $R^2$ reaching 90%. Conclusion: Combined with advanced chemometrics, the E-nose is capable of discriminating between American and Asian ginseng in both qualitative and quantitative angles, presenting an accurate, rapid, and nondestructive reference approach.

Ultrastructural Feature and Photobleaching of ginseng Chloroplasts (인삼 엽록체의 미세구조와 Photobleaching)

  • 양덕조;김명원
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.416-420
    • /
    • 1990
  • Ultrastructural and anatomical features of the leaf were studied in Panax ginseng C.A. Meyer(ginseng). The ginseng leaf poorly developed palisade tissue and the size of mesophyll cell was larger and the chloroplast density was lower than that of Glycine max (soyben). Ginseng chloroplast was filled with highly stacked grana and condensely-arrayed thylakoid, so the stroma space was hardly absorbed. However, ginseng mesophyll tissue and chloroplast array did not reduce light energy entering the mesophyll chloroplast, and the high LHCP/CP ratio of ginseng thylakoid resulted in the absorption of excess photon. It is reasonable to assume that 1O1-photogenearation by excess light energy partially resulted from the anatomical and ultrastructural characteristics of the ginseng leaf.

  • PDF

Chemical Composition of Panax Ginseng-Leaf Tea (고려인삼 엽록차의 화학성분 조성)

  • Joong Ho Kwon;Myu
    • Journal of Ginseng Research
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • Chemical composition was determined to evaluate the quality of Panel ginseng-leaf tea over green teas. Ginseng-leaf tea was shown to contain higher contents of soluble matter, ascorbic acid and lower contents of tannins, as compared to tea leaves. The profiles of ginsenoside and sugar of ginseng-leaf tea were noticeably different from those of ginseng roots and the sample maintained high levels of these components under the manufacturing process. Total unsaturated fatty acids and free amino acids were estimated to be decreased in ginseng-leaf tea as compared to those of ginseng leaves. The compositions of amino acids and minerals in ginseng-leaf tea were similar to those of tea leaves and glutamic acid, aspartic acid, leucine, calcium, potassium, sodium, and copper were found to be major components.

  • PDF

Trends in Ginseng Research in 2010

  • Kim, Si-Kwan;Park, Jeong-Hill
    • Journal of Ginseng Research
    • /
    • v.35 no.4
    • /
    • pp.389-398
    • /
    • 2011
  • A total of 470 papers directly related to research on the Panax species were retrieved by performing internet searches with the keywords Panax and ginseng as the search terms. The publications were categorized as follows: 399 research articles, 30 reviews, 30 meeting abstracts, 7 proceedings, and 4 letters. The majority of these publications were published by scientists from Korea (35.7%), China (32.3%), and the USA (11.3%). Scientists from a total of 29 nations were actively involved in conducting ginseng research. A total of 43.6% of the publications were categorized as pharmacodynamic studies. The effects of ginseng on cerebrovascular function and cancer were the two most common topics considered in the pharmacodynamic studies. More than half of the ginseng studies assessed the use of P. ginseng. A total of 23 countries participated in studies specifically related to P. ginseng, and more than 80% of these studies originated from Korea and China. A total of 50 topics within the pharmacodynamics category were examined in association with the use of P. ginseng.

General Introduction of American Ginseng Indigenous in USA and Canada

  • Park, Chung-Heon;Bang, Kyung-Hwan;Park, Chun-Geun;Sung, Jung-Sook;Song, Won-Seob
    • Plant Resources
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 2003
  • American ginseng (Panax quinquefolium) is herbaceous perennial plants indigenous to North American forests. This is highly valued as medicinal herbs with a long history of collection from wild populations since 1716. Wild American ginseng distributed from Quebec in Canada to northern Florida in USA. A heavy concentration is found in the Appalachian mountains, although wild American ginseng is considered endangered. The price paid for field cultivated ginseng has dropped dramatically in the past 10 years, while the price for wild or woods cultivated ginseng has rised significantly. The price curve for ginseng resembles a roller coaster, reflecting not only supply and demand but many other factors. This information will be useful to understand American ginseng compared to Korean ginseng.

  • PDF

Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System

  • Kang, Soo-Won;Min, Hye-Young
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.354-368
    • /
    • 2012
  • Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenera tive disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections.

PRODUCTION OF GINSENOSIDES THROUGH IN VITRO CULTURE OF GINSENG(Panax ginseng C.A. MEYER)

  • Choi K.T.;Ahn I.O.;Park J.C.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.143-149
    • /
    • 1993
  • Ginseng root explants and calli induced from selected cell lines were cultured on modified Murashige and Skoog's media supplemented with different concentrations of organic or inorganic compounds and plant growth requlators to clarify the effects of chemical composition and plant growth regulators in the medium on the growth of ginseng calli and the production of ginseng saponin. For optimum growth of calli, the concentrations of 2, 4-D and sucrose were the range of 1 to 3 mg/${\ell}$l and 1 to $3\%,$ respectively. And it was clarified that sucrose, nitrogen, phosphate, calcium, magmesian plant growth regulators and their concentrations influcenced the relative biosynthesis of saponin in tissue cultures of Panax ginseng. The patterns of ginsenosides, pharmacologically useful component, were different among the cell lines and contents of ginsenosides were much higher in selected cell lines than in original cell line.

  • PDF

Anti-tumor Substance from Panax Kinsenk Roots

  • Hiroshi Yamamoto;Mitsuo Katano;Hisashi Matsunaga
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.102-110
    • /
    • 1990
  • Antitumor polyacetylenlc alcohol, panaxytriol (Ci7 H2603), was isolated and purified from a Powder of the root of Panax ginseng C.A. Meyer. Panaxytriol Possesses unusual Property of being soluble in both water and organic solvents. Panaxytriol inhibited the growth of various kinds of human cultured cell lines in dose-dependent fashion in vitro. The in vivo effects of panaxytriol were tested against C57BU6 mice transplanted with Bl6 melanomas. Panaxytriol (8 and 40 mg/kg) administered intramuscularly (im) produced significant tumor growth delays in mice. Although a detailed mechanism of growth inhibition by panaxytriol is unknown, preliminary results appear to implicate a surface membrane site of action. And its action seems to be more dose-dependent than time-dependent. Finally, panaxytriol pharmacokinetics was evaluated in mice given single 8 mgrkg doses intraperitoneally(ip) or im. Serum panaxytriol content was measured using both tumor growth inhibitory assay and a gas chromatographic method. The maximum serum panaxytriol content after ip and im administration was 35.0 and 1.61 ug/ml respectively. These results indicate that the compound may act as cytotoxic substance even in-patients. Keywords Panax ginseng, panaxytriol, tumor growth inhibition

  • PDF

Tropomyosin and triosephosphate isomerase are upregulated proteins affecting Ginseng treatments in chicken muscle

  • Jung, Kie-Chul;Choi, Kang-Duk;Jang, Byoung-Gui;Sang, Byung-Don;Lee, Jun-Heon
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.21-22
    • /
    • 2004
  • The present study was aimed to investigate proteome affected by Panax ginseng extracts in chicken muscles. More than 300 protein spots were detected on silver staining gels. Among them. four protein spots were distinctively up-regulated by Panax ginseng treatments. The up-regulated proteins were finally identified as tropomyosin (2 spots), triosephosphate isomerase, and one unknown protein. Based on the known functions of the identified proteins. they are highly related to the muscle development and enhanced immunity in chicken. These proteins can give valuable information of biochemical roles for Panax ginseng in chicken meats.

  • PDF