DOI QR코드

DOI QR Code

Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System

  • Received : 2012.06.14
  • Accepted : 2012.07.19
  • Published : 2012.10.15

Abstract

Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenera tive disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections.

Keywords

References

  1. Akerele O. WHO guideline for assessment of herbal medicines. Fitoterapia 1992;63:99-104.
  2. Baek SH, Bae ON, Park JH. Recent methodology in ginseng analysis. J Ginseng Res 2012;36:119-134. https://doi.org/10.5142/jgr.2012.36.2.119
  3. Kim MK, Lee JW, Lee KY, Yang DC. Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 2005;43:456-462.
  4. Cui J, Garle M, Eneroth P, Bjorkhem I. What do commercial ginseng preparations contain? Lancet 1994;344:134.
  5. Sohn EH, Jang SA, Lee CH, Jang KH, Kang SC, Park HJ, Pyo SN. Effects of Korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J Ginseng Res 2011;35:479-486. https://doi.org/10.5142/jgr.2011.35.4.479
  6. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 2000;23:1481-1485. https://doi.org/10.1248/bpb.23.1481
  7. Jie YH, Cammisuli S, Baggiolini M. Immunomodulatory effects of Panax ginseng C.A. Meyer in the mouse. Agents Actions 1984;15:386-391. https://doi.org/10.1007/BF01972376
  8. Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F. Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drugs Exp Clin Res 1990;16:537-542.
  9. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008;29:1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  10. Kitts D, Hu C. Efficacy and safety of ginseng. Public Health Nutr 2000;3:473-485.
  11. Elias PM. The skin barrier as an innate immune element. Semin Immunopathol 2007;29:3-14. https://doi.org/10.1007/s00281-007-0060-9
  12. Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9:4-9. https://doi.org/10.1016/S0952-7915(97)80152-5
  13. Albiger B, Dahlberg S, Henriques-Normark B, Normark S. Role of the innate immune system in host defence against bacterial infections: focus on the Toll-like receptors. J Intern Med 2007;261:511-528. https://doi.org/10.1111/j.1365-2796.2007.01821.x
  14. Gordon S. The macrophage. Bioessays 1995;17:977-986. https://doi.org/10.1002/bies.950171111
  15. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003;54:469-487.
  16. Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol Immunotoxicol 2002;24:469-482. https://doi.org/10.1081/IPH-120014730
  17. Lim DS, Bae KG, Jung IS, Kim CH, Yun YS, Song JY. Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J Infect 2002;45:32-38. https://doi.org/10.1053/jinf.2002.1007
  18. Choi HS, Kim KH, Sohn E, Park JD, Kim BO, Moon EY, Rhee DK, Pyo S. Red ginseng acidic polysaccharide (RGAP) in combination with IFN-gamma results in enhanced macrophage function through activation of the NF-kappaB pathway. Biosci Biotechnol Biochem 2008;72:1817-1825. https://doi.org/10.1271/bbb.80085
  19. Friedl R, Moeslinger T, Kopp B, Spieckermann PG. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br J Pharmacol 2001;134:1663-1670. https://doi.org/10.1038/sj.bjp.0704425
  20. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin Chim Acta 2003;327:123-128. https://doi.org/10.1016/S0009-8981(02)00343-1
  21. Palucka K, Banchereau J. Dendritic cells: a link between innate and adaptive immunity. J Clin Immunol 1999;19:12-25. https://doi.org/10.1023/A:1020558317162
  22. Stockwin LH, McGonagle D, Martin IG, Blair GE. Dendritic cells: immunological sentinels with a central role in health and disease. Immunol Cell Biol 2000;78:91-102. https://doi.org/10.1046/j.1440-1711.2000.00888.x
  23. Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, Joo HG. Immunomodulatory activity of ginsan, a polysaccharide of Panax ginseng, on dendritic cells. Korean J Physiol Pharmacol 2009;13:169-173. https://doi.org/10.4196/kjpp.2009.13.3.169
  24. Takei M, Tachikawa E, Hasegawa H, Lee JJ. Dendritic cells maturation promoted by M1 and M4, end products of steroidal ginseng saponins metabolized in digestive tracts, drive a potent Th1 polarization. Biochem Pharmacol 2004;68:441-452. https://doi.org/10.1016/j.bcp.2004.04.015
  25. Su W, Sun AJ, Xu DL, Zhang HQ, Yang L, Yuan LY, Jia JG, Zou YZ, Wu YL, Wang KQ et al. Inhibiting effects of total saponins of Panax ginseng on immune maturation of dendritic cells induced by oxidized-low density lipoprotein. Cell Immunol 2010;263:99-104. https://doi.org/10.1016/j.cellimm.2010.03.004
  26. Tung NH, Quang TH, Son JH, Koo JE, Hong HJ, Koh YS, Song GY, Kim YH. Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPSstimulated IL-12 production in bone marrow-derived dendritic cells. Arch Pharm Res 2011;34:681-685. https://doi.org/10.1007/s12272-011-0419-2
  27. Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science 2004;306:1517-1519. https://doi.org/10.1126/science.1103478
  28. Kenarova B, Neychev H, Hadjiivanova C, Petkov VD. Immunomodulating activity of ginsenoside Rg1 from Panax ginseng. Jpn J Pharmacol 1990;54:447-454. https://doi.org/10.1254/jjp.54.447
  29. Kim JY, Germolec DR, Luster MI. Panax ginseng as a potential immunomodulator: studies in mice. Immunopharmacol Immunotoxicol 1990;12:257-276. https://doi.org/10.3109/08923979009019672
  30. See DM, Broumand N, Sahl L, Tilles JG. In vitro effects of echinacea and ginseng on natural killer and antibodydependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodefi ciency syndrome patients. Immunopharmacology 1997;35:229-235. https://doi.org/10.1016/S0162-3109(96)00125-7
  31. Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002;91:281-291. https://doi.org/10.1161/01.RES.0000029784.15893.10
  32. Kurtz J. Memory in the innate and adaptive immune systems. Microbes Infect 2004;6:1410-1417. https://doi.org/10.1016/j.micinf.2004.10.002
  33. Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity 1998;8:363-372. https://doi.org/10.1016/S1074-7613(00)80541-5
  34. Newton SM, Jacob CO, Stocker BA. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 1989;244:70-72. https://doi.org/10.1126/science.2468182
  35. Vecchiarelli A, Casadevall A. Antibody-mediated effects against Cryptococcus neoformans: evidence for interdependency and collaboration between humoral and cellular immunity. Res Immunol 1998;149:321-333. https://doi.org/10.1016/S0923-2494(98)80756-6
  36. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010;20:34-50. https://doi.org/10.1038/cr.2009.139
  37. Liou CJ, Huang WC, Tseng J. Long-term oral administration of ginseng extract modulates humoral immune response and spleen cell functions. Am J Chin Med 2005;33:651-661. https://doi.org/10.1142/S0192415X05003247
  38. Liou CJ, Li ML, Tseng J. Intraperitoneal injection of ginseng extract enhances both immunoglobulin and cytokine production in mice. Am J Chin Med 2004;32:75-88. https://doi.org/10.1142/S0192415X04001771
  39. Na HS, Lim YJ, Yun YS, Kweon MN, Lee HC. Ginsan enhances humoral antibody response to orally delivered antigen. Immune Netw 2010;10:5-14. https://doi.org/10.4110/in.2010.10.1.5
  40. Yoo DG, Kim MC, Park MK, Park KM, Quan FS, Song JM, Wee JJ, Wang BZ, Cho YK, Compans RW et al. Protective effect of ginseng polysaccharides on infl uenza viral infection. PLoS One 2012;7:e33678. https://doi.org/10.1371/journal.pone.0033678
  41. Qu DF, Yu HJ, Liu Z, Zhang DF, Zhou QJ, Zhang HL, Du AF. Ginsenoside Rg1 enhances immune response induced by recombinant Toxoplasma gondii SAG1 antigen. Vet Parasitol 2011;179:28-34. https://doi.org/10.1016/j.vetpar.2011.02.008
  42. Sumiyoshi M, Sakanaka M, Kimura Y. Effects of red ginseng extract on allergic reactions to food in Balb/c mice. J Ethnopharmacol 2010;132:206-212. https://doi.org/10.1016/j.jep.2010.08.012
  43. Behrens G, Li M, Smith CM, Belz GT, Mintern J, Carbone FR, Heath WR. Helper T cells, dendritic cells and CTL Immunity. Immunol Cell Biol 2004;82:84-90. https://doi.org/10.1111/j.1440-1711.2004.01211.x
  44. Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002;20:323-370. https://doi.org/10.1146/annurev.immunol.20.100201.131730
  45. Berek L, Szabo D, Petri IB, Shoyama Y, Lin YH, Molnar J. Effects of naturally occurring glucosides, solasodine glucosides, ginsenosides and parishin derivatives on multidrug resistance of lymphoma cells and leukocyte functions. In Vivo 2001;15:151-156.
  46. Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011;138:169-178. https://doi.org/10.1016/j.imlet.2011.04.005
  47. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 2004;4:235-244. https://doi.org/10.1016/j.intimp.2003.12.007
  48. Seo N, Hayakawa S, Tokura Y. Mechanisms of immune privilege for tumor cells by regulatory cytokines produced by innate and acquired immune cells. Semin Cancer Biol 2002;12:291-300. https://doi.org/10.1016/S1044-579X(02)00015-9
  49. Alfano M, Poli G. Role of cytokines and chemokines in the regulation of innate immunity and HIV infection. Mol Immunol 2005;42:161-182. https://doi.org/10.1016/j.molimm.2004.06.016
  50. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004;5:987-995. https://doi.org/10.1038/ni1112
  51. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135-145. https://doi.org/10.1038/35100529
  52. Liou CJ, Huang WC, Tseng J. Short-term oral administration of ginseng extract induces type-1 cytokine production. Immunopharmacol Immunotoxicol 2006;28:227-240. https://doi.org/10.1080/08923970600816681
  53. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med 1998;64:110-115. https://doi.org/10.1055/s-2006-957385
  54. Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of Staphylococcus aureus-infected septic mice by suppression of early acute infl ammation and enhanced antimicrobial activity by ginsan. FEMS Immunol Med Microbiol 2006;46:187-197. https://doi.org/10.1111/j.1574-695X.2005.00021.x
  55. Park JS, Shin JA, Jung JS, Hyun JW, Van Le TK, Kim DH, Park EM, Kim HS. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Ther 2012;341:59-67. https://doi.org/10.1124/jpet.111.189035
  56. Kim TW, Joh EH, Kim B, Kim DH. Ginsenoside Rg5 ameliorates lung infl ammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol 2012;12:110-116. https://doi.org/10.1016/j.intimp.2011.10.023
  57. Kim HA, Kim S, Chang SH, Hwang HJ, Choi YN. Antiarthritic effect of ginsenoside Rb1 on collagen induced arthritis in mice. Int Immunopharmacol 2007;7:1286-1291. https://doi.org/10.1016/j.intimp.2007.05.006
  58. Nakaya TA, Kita M, Kuriyama H, Iwakura Y, Imanishi J. Panax ginseng induces production of proinfl ammatory cytokines via toll-like receptor. J Interferon Cytokine Res 2004;24:93-100. https://doi.org/10.1089/107999004322813336
  59. Ahn JY, Choi IS, Shim JY, Yun EK, Yun YS, Jeong G, Song JY. The immunomodulator ginsan induces resistance to experimental sepsis by inhibiting Toll-like receptor-mediated infl ammatory signals. Eur J Immunol 2006;36:37-45. https://doi.org/10.1002/eji.200535138
  60. Constant SL, Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997;15:297-322. https://doi.org/10.1146/annurev.immunol.15.1.297
  61. Han SK, Song JY, Yun YS, Yi SY. Ginsan improved Th1 immune response inhibited by gamma radiation. Arch Pharm Res 2005;28:343-350. https://doi.org/10.1007/BF02977803
  62. Larsen MW, Moser C, Hoiby N, Song Z, Kharazmi A. Ginseng modulates the immune response by induction of interleukin-12 production. APMIS 2004;112:369-373. https://doi.org/10.1111/j.1600-0463.2004.apm1120607.x
  63. Lee JH, Han Y. Ginsenoside Rg1 helps mice resist to disseminated candidiasis by Th1 type differentiation of CD4+ T cell. Int Immunopharmacol 2006;6:1424-1430. https://doi.org/10.1016/j.intimp.2006.04.009
  64. Song Z, Moser C, Wu H, Faber V, Kharazmi A, Hoiby N. Cytokine modulating effect of ginseng treatment in a mouse model of Pseudomonas aeruginosa lung infection. J Cyst Fibros 2003;2:112-119. https://doi.org/10.1016/S1569-1993(03)00065-1
  65. Rivera E, Ekholm Pettersson F, Inganas M, Paulie S, Gronvik KO. The Rb1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine 2005;23: 5411-5419. https://doi.org/10.1016/j.vaccine.2005.04.007
  66. Yang Z, Chen A, Sun H, Ye Y, Fang W. Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 2007;25:161-169. https://doi.org/10.1016/j.vaccine.2006.05.075
  67. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448-454. https://doi.org/10.1056/NEJM199902113400607
  68. Nagy G, Clark JM, Buzas EI, Gorman CL, Cope AP. Nitric oxide, chronic infl ammation and autoimmunity. Immunol Lett 2007;111:1-5. https://doi.org/10.1016/j.imlet.2007.04.013
  69. Manzo A, Bombardieri M, Humby F, Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from infl ammation to autoimmunity and tissue damage/remodeling. Immunol Rev 2010;233:267-285. https://doi.org/10.1111/j.0105-2896.2009.00861.x
  70. Kim DY, Yang WM. Panax ginseng ameliorates airway infl ammation in an ovalbumin-sensitized mouse allergic asthma model. J Ethnopharmacol 2011;136:230-235. https://doi.org/10.1016/j.jep.2011.04.048
  71. Oyagi A, Ogawa K, Kakino M, Hara H. Protective effects of a gastrointestinal agent containing Korean red ginseng on gastric ulcer models in mice. BMC Complement Altern Med 2010;10:45. https://doi.org/10.1186/1472-6882-10-45
  72. Babayigit A, Olmez D, Karaman O, Bagriyanik HA, Yilmaz O, Kivcak B, Erbil G, Uzuner N. Ginseng ameliorates chronic histopathologic changes in a murine model of asthma. Allergy Asthma Proc 2008;29:493-498. https://doi.org/10.2500/aap.2008.29.3137
  73. Lim YJ, Na HS, Yun YS, Choi IS, Oh JS, Rhee JH, Cho BH, Lee HC. Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model. Int Arch Allergy Immunol 2009;150:32-42. https://doi.org/10.1159/000210378
  74. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local infl ammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 2012;202:342-351. https://doi.org/10.1016/j.neuroscience.2011.11.070
  75. Chang SH, Choi Y, Park JA, Jung DS, Shin J, Yang JH, Ko SY, Kim SW, Kim JK. Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr 2007;26:785-791. https://doi.org/10.1016/j.clnu.2007.07.008
  76. Kim KR, Chung TY, Shin H, Son SH, Park KK, Choi JH, Chung WY. Red ginseng saponin extract attenuates murine collagen-induced arthritis by reducing pro-infl ammatory responses and matrix metalloproteinase-3 expression. Biol Pharm Bull 2010;33:604-610. https://doi.org/10.1248/bpb.33.604
  77. Bae EA, Han MJ, Shin YW, Kim DH. Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol Pharm Bull 2006;29:1862-1867. https://doi.org/10.1248/bpb.29.1862
  78. Hong CE, Lyu SY. Anti-inflammatory and anti-oxidative effects of Korean red ginseng extract in human keratinocytes. Immune Netw 2011;11:42-49. https://doi.org/10.4110/in.2011.11.1.42
  79. Samukawa K, Izumi Y, Shiota M, Nakao T, Osada-Oka M, Miura K, Iwao H. Red ginseng inhibits scratching behavior associated with atopic dermatitis in experimental animal models. J Pharmacol Sci 2012;118:391-400. https://doi.org/10.1254/jphs.11182FP
  80. Lee JH, Cho SH. Korean red ginseng extract ameliorates skin lesions in NC/Nga mice: an atopic dermatitis model. J Ethnopharmacol 2011;133:810-817. https://doi.org/10.1016/j.jep.2010.11.020
  81. Park HJ, Byeon HE, Choi KW, Rhee DK, Lee KR, Pyo SN. Inhibitory effects of ginsenoside Rb1 on atopic dermatitis-like skin lesions in mice. J Ginseng Res 2010;34: 363-368. https://doi.org/10.5142/jgr.2010.34.4.363
  82. Lee KG, Son SW. Efficacy of Korean red ginseng in the treatment of atopic dermatitis. J Ginseng Res 2011;35: 149-154. https://doi.org/10.5142/jgr.2011.35.2.149
  83. Gonzalez-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K. Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 2009;10:3400-3419. https://doi.org/10.3390/ijms10083400
  84. Song ZJ, Johansen HK, Faber V, Hoiby N. Ginseng treatment enhances bacterial clearance and decreases lung pathology in athymic rats with chronic P. aeruginosa pneumonia. APMIS 1997;105:438-444. https://doi.org/10.1111/j.1699-0463.1997.tb00591.x
  85. Song Z, Johansen HK, Faber V, Moser C, Kharazmi A, Rygaard J, Hoiby N. Ginseng treatment reduces bacterial load and lung pathology in chronic Pseudomonas aeruginosa pneumonia in rats. Antimicrob Agents Chemother 1997;41:961-964.
  86. Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells. Cell 2006;124:715-727. https://doi.org/10.1016/j.cell.2006.02.012
  87. Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. Inhibition of pathogen adhesion to host cells by polysaccharides from Panax ginseng. Biosci Biotechnol Biochem 2009;73:209-212. https://doi.org/10.1271/bbb.80555
  88. Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydr Res 2006;341:1154-1163. https://doi.org/10.1016/j.carres.2006.03.032
  89. Fukuyama N, Shibuya M, Orihara Y. Antimicrobial polyacetylenes from Panax ginseng hairy root culture. Chem Pharm Bull (Tokyo) 2012;60:377-380. https://doi.org/10.1248/cpb.60.377
  90. Lee JH, Park EK, Uhm CS, Chung MS, Kim KH. Inhibition of Helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by acidic polysaccharides from Artemisia capillaris and Panax ginseng. Planta Med 2004;70:615-619. https://doi.org/10.1055/s-2004-827183
  91. Park S, Yeo M, Jin JH, Lee KM, Jung JY, Choue R, Cho SW, Hahm KB. Rescue of Helicobacter pylori-induced cytotoxicity by red ginseng. Dig Dis Sci 2005;50:1218-1227. https://doi.org/10.1007/s10620-005-2763-x
  92. Song Z, Johansen HK, Moser C, Høiby N. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection. APMIS 1996;104:350-354. https://doi.org/10.1111/j.1699-0463.1996.tb00726.x
  93. Song Z, Kong KF, Wu H, Maricic N, Ramalingam B, Priestap H, Schneper L, Quirke JM, Hoiby N, Mathee K. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine 2010;17:1040-1046. https://doi.org/10.1016/j.phymed.2010.03.015
  94. Scaglione F, Cattaneo G, Alessandria M, Cogo R. Efficacy and safety of the standardised ginseng extract G115 for potentiating vaccination against the influenza syndrome and protection against the common cold. Drugs Exp Clin Res 1996;22:65-72.
  95. Chan LY, Kwok HH, Chan RW, Peiris MJ, Mak NK, Wong RN, Chan MC, Yue PY. Dual functions of ginsenosides in protecting human endothelial cells against influenza H9N2-induced inflammation and apoptosis. J Ethnopharmacol 2011;137:1542-1546. https://doi.org/10.1016/j.jep.2011.08.022
  96. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF. Human infection with infl uenza H9N2. Lancet 1999;354:916-917. https://doi.org/10.1016/S0140-6736(99)03311-5
  97. Kim JY, Kim HJ, Kim HJ. Effect of oral administration of Korean red ginseng on influenza A (H1N1) virus infection. J Ginseng Res 2011;35:104-110. https://doi.org/10.5142/jgr.2011.35.1.104
  98. Quan FS, Compans RW, Cho YK, Kang SM. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007;25:272-282. https://doi.org/10.1016/j.vaccine.2006.07.041
  99. Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 2009;60:471-484. https://doi.org/10.1146/annurev.med.60.041807.123549
  100. Weiss RA. How does HIV cause AIDS? Science 1993;260:1273-1279. https://doi.org/10.1126/science.8493571
  101. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998;338:853-860. https://doi.org/10.1056/NEJM199803263381301
  102. Sung H, Jung YS, Cho YK. Beneficial effects of a combination of Korean red ginseng and highly active antiretroviral therapy in human immunodeficiency virus type 1-infected patients. Clin Vaccine Immunol 2009;16:1127-1131. https://doi.org/10.1128/CVI.00013-09
  103. Geffi n R, Wolf D, Muller R, Hill MD, Stellwag E, Freitag M, Sass G, Scott GB, Baur AS. Functional and structural defects in HIV type 1 nef genes derived from pediatric long-term survivors. AIDS Res Hum Retroviruses 2000;16:1855-1868. https://doi.org/10.1089/08892220050195810
  104. Cho YK, Jung YS, Sung H. Frequent gross deletion in the HIV type 1 nef gene in hemophiliacs treated with Korean red ginseng: inhibition of detection by highly active antiretroviral therapy. AIDS Res Hum Retroviruses 2009;25:419-424. https://doi.org/10.1089/aid.2008.0178
  105. Cho YK, Lim JY, Jung YS, Oh SK, Lee HJ, Sung H. High frequency of grossly deleted nef genes in HIV-1 infected long-term slow progressors treated with Korean red ginseng. Curr HIV Res 2006;4:447-457. https://doi.org/10.2174/157016206778560072
  106. Cho YK, Jung YS. Dosage and duration effects of Korean red ginseng intake on frequency of gross deletions in the nef gene. J Ginseng Res 2010;34:219-226. https://doi.org/10.5142/jgr.2010.34.3.219
  107. Cho YK, Jung YS, Sung H, Sim MK, Kim YK. High frequency of gross deletions in 5' LTR/gag and nef genes in patients infected with CRF02_AG of HIV type 1 who survived for over 20 years: an association with Korean red ginseng. AIDS Res Hum Retroviruses 2009;25:535-541. https://doi.org/10.1089/aid.2008.0301
  108. Cho YK, Jung YJ, Sung HS, Joo CH. Frequent genetic defects in the HIV-1 5'LTR/gag gene in hemophiliacs treated with Korean red ginseng: decreased detection of genetic defects by highly active antiretroviral therapy. J Ginseng Res 2011;35:413-420. https://doi.org/10.5142/jgr.2011.35.4.413
  109. Cho YK, Jung YS. High frequency of gross deletions in the 5' LTR and gag regions in HIV type 1-infected longterm survivors treated with Korean red ginseng. AIDS Res Hum Retroviruses 2008;24:181-193. https://doi.org/10.1089/aid.2007.0143
  110. Lee MH, Lee BH, Jung JY, Cheon DS, Kim KT, Choi CS. Antiviral effect of Korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J Ginseng Res 2011;35:429-435. https://doi.org/10.5142/jgr.2011.35.4.429
  111. Bae EA, Shin JE, Park SH, Kim DH. Inhibitory effect of ginseng polysaccharides on rotavirus infection. J Microbiol Biotechnol 2004;14:202-204.
  112. O'Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2003;2:727-735. https://doi.org/10.1038/nrd1176
  113. McElrath MJ. Selection of potent immunological adjuvants for vaccine construction. Semin Cancer Biol 1995;6:375-385. https://doi.org/10.1016/1044-579X(95)90007-1
  114. Singh M, O'Hagan DT. Recent advances in veterinary vaccine adjuvants. Int J Parasitol 2003;33:469-478. https://doi.org/10.1016/S0020-7519(03)00053-5
  115. Song X, Hu S. Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine 2009;27:4883-4890. https://doi.org/10.1016/j.vaccine.2009.06.033
  116. Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol 1992;36:27-38. https://doi.org/10.1016/0378-8741(92)90057-X
  117. Sun J, Hu S, Song X. Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. Vaccine 2007;25:1114-1120. https://doi.org/10.1016/j.vaccine.2006.09.054
  118. Song X, Chen J, Sakwiwatkul K, Li R, Hu S. Enhancement of immune responses to infl uenza vaccine (H3N2) by ginsenoside Re. Int Immunopharmacol 2010;10:351-356. https://doi.org/10.1016/j.intimp.2009.12.009
  119. Song X, Zang L, Hu S. Amplified immune response by ginsenoside-based nanoparticles (ginsomes). Vaccine 2009;27:2306-2311. https://doi.org/10.1016/j.vaccine.2009.02.040
  120. Su F, Yuan L, Zhang L, Hu S. Ginsenosides Rg1 and Re act as adjuvant via TLR4 signaling pathway. Vaccine 2012;30:4106-4112. https://doi.org/10.1016/j.vaccine.2012.03.052
  121. Sun J, Song X, Hu S. Ginsenoside Rg1 and aluminum hydroxide synergistically promote immune responses to ovalbumin in BALB/c mice. Clin Vaccine Immunol 2008;15:303-307. https://doi.org/10.1128/CVI.00448-07

Cited by

  1. A 14-week randomized, placebo-controlled, double-blind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75) vol.12, pp.1, 2014, https://doi.org/10.1186/s12967-014-0283-1
  2. Ginseng and Anticancer Drug Combination to Improve Cancer Chemotherapy: A Critical Review vol.2014, pp.1741-4288, 2014, https://doi.org/10.1155/2014/168940
  3. Herbal medicines for cancer cachexia: protocol for a systematic review vol.4, pp.6, 2014, https://doi.org/10.1136/bmjopen-2014-005016
  4. of ginsenosides in sulphur-fumigated and non-fumigated ginseng by ultra performance liquid chromatography quadruple time-of-flight mass spectrometry based chemical profiling approach vol.7, pp.4, 2014, https://doi.org/10.1002/dta.1675
  5. Characterization of a Ginsenoside-Transforming β-glucosidase from Paenibacillus mucilaginosus and Its Application for Enhanced Production of Minor Ginsenoside F2 vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085727
  6. Fuzheng Qingjie recipe induces apoptosis in HepG2 cells via P38 MAPK activation and the mitochondria-dependent apoptotic pathway vol.9, pp.6, 2014, https://doi.org/10.3892/mmr.2014.2138
  7. Identification and Characterization of a Ginsenoside-Transforming β-Glucosidase from Pseudonocardia sp. Gsoil 1536 and Its Application for Enhanced Production of Minor Ginsenoside Rg2(S) vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0096914
  8. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury vol.94, pp.10, 2014, https://doi.org/10.1038/labinvest.2014.101
  9. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening vol.12, pp.10, 2015, https://doi.org/10.1021/acs.molpharmaceut.5b00465
  10. Negative regulation of the inflammasome: keeping inflammation under control vol.265, pp.1, 2015, https://doi.org/10.1111/imr.12294
  11. Spleen Function and Anxiety in Chinese Medicine: A Western Medicine Perspective vol.07, pp.03, 2016, https://doi.org/10.4236/cm.2016.73012
  12. in RAW 264.7 cells vol.17, pp.3, 2016, https://doi.org/10.4142/jvs.2016.17.3.315
  13. Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana vol.22, pp.4, 2016, https://doi.org/10.1007/s12298-016-0384-9
  14. strain TH-10a vol.46, pp.4, 2016, https://doi.org/10.1080/10826068.2015.1031391
  15. vol.48, pp.5, 2017, https://doi.org/10.1111/are.13072
  16. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection vol.68, pp.3, 2016, https://doi.org/10.1111/jphp.12529
  17. Effect of SRD-P401 on the Discomfort of Neck and/or Shoulder Stiffness vol.08, pp.05, 2017, https://doi.org/10.4236/ajps.2017.85070
  18. Fuzheng Qingjie Granules Inhibit Growth of Hepatoma Cells via Inducing Mitochondria-Mediated Apoptosis and Enhancing Immune Function vol.16, pp.3, 2017, https://doi.org/10.1177/1534735416654761
  19. 1/Smad Pathway vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/7171404
  20. Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060880
  21. T Helper Subsets: A Complex Web Crucial to Immunomodulating Herbs vol.23, pp.2, 2017, https://doi.org/10.1089/act.2017.29103.eya
  22. leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages vol.45, pp.2, 2017, https://doi.org/10.1080/21691401.2016.1228661
  23. Synergistic production of 20(S)-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0524-9
  24. Isoform Sequencing Provides a More Comprehensive View of the Panax ginseng Transcriptome vol.8, pp.9, 2017, https://doi.org/10.3390/genes8090228
  25. Inhibition of Cholesterol Synthesis in HepG2 Cells by GINST-Decreasing HMG-CoA Reductase Expression Via AMP-Activated Protein Kinase vol.82, pp.11, 2017, https://doi.org/10.1111/1750-3841.13828
  26. Effects of ginsenosides on regulatory T cell differentiation pp.2092-6456, 2017, https://doi.org/10.1007/s10068-017-0255-3
  27. Dietary Supplementation of Chinese Ginseng Prevents Obesity and Metabolic Syndrome in High-Fat Diet-Fed Mice vol.17, pp.12, 2014, https://doi.org/10.1089/jmf.2014.0016
  28. Immunomodulatory effects of selected Malaysian plants on the CD18/11a expression and phagocytosis activities of leukocytes vol.5, pp.1, 2015, https://doi.org/10.1016/S2221-1691(15)30170-2
  29. in rats with estrogen decline using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry vol.9, pp.3, 2018, https://doi.org/10.1039/C7FO01680H
  30. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02785
  31. -Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2018.4180
  32. Lam. heartwood inhibit the innate immune responses of human phagocytes vol.70, pp.9, 2018, https://doi.org/10.1111/jphp.12952
  33. Ginsenosides from Korean red ginseng modulate T cell function via the regulation of NF-AT-mediated IL-2 production pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0428-8
  34. Metabolomics reveals immunomodulation as a possible mechanism for the antibiotic effect of Persicaria capitata (Buch.-Ham. ex D. Don) H.Gross vol.14, pp.7, 2018, https://doi.org/10.1007/s11306-018-1388-y
  35. Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-30262-7
  36. Alkaloids and Seven Ginsenosides in Rat Plasma and Application to Pharmacokinetics of Shen-Fu Prescription vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/5107083
  37. extracts on rats vol.9, pp.6, 2018, https://doi.org/10.1039/C8FO00025E
  38. Fermented Red Ginseng Alleviates Cyclophosphamide-Induced Immunosuppression and 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice by Regulating Macrophage Activation and T Cell Differentiation vol.46, pp.08, 2018, https://doi.org/10.1142/S0192415X18500945
  39. Nutraceuticals Inspiring the Current Therapy for Lifestyle Diseases vol.2019, pp.1687-6342, 2019, https://doi.org/10.1155/2019/6908716
  40. Chemical composition characteristics of Korean straight ginseng products vol.1, pp.1, 2014, https://doi.org/10.1016/j.jef.2014.11.007
  41. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions vol.6, pp.None, 2012, https://doi.org/10.3389/fphar.2015.00245
  42. 인삼 지상부를 첨가한 사료 급여가 닭에서 나타내는 효과 vol.55, pp.1, 2012, https://doi.org/10.14405/kjvr.2015.55.1.1
  43. Dietary Supplements and Postoperative Bleeding vol.22, pp.2, 2015, https://doi.org/10.18787/jr.2015.22.2.63
  44. Protective Effects on Central Nervous System by Acidic Polysaccharide of Panax ginseng in Relapse-Remitting Experimental Autoimmune Encephalomyelitis-Induced SJL/J Mice vol.44, pp.6, 2012, https://doi.org/10.1142/s0192415x16500610
  45. Use of Gold Nanoparticle Fertilizer Enhances the Ginsenoside Contents and Anti-Inflammatory Effects of Red Ginseng vol.26, pp.10, 2016, https://doi.org/10.4014/jmb.1604.04034
  46. In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: in vitro cytocompatibility studies vol.12, pp.None, 2012, https://doi.org/10.2147/ijn.s125154
  47. Antiviral activity of 20(R)-ginsenoside Rh2 against murine gammaherpesvirus vol.41, pp.4, 2017, https://doi.org/10.1016/j.jgr.2016.08.010
  48. Towards natural mimetics of metformin and rapamycin vol.9, pp.11, 2012, https://doi.org/10.18632/aging.101319
  49. Investigation of Herb-Drug Interactions between Korean Red Ginseng Extract and five CYP Substrates by LC-MS/MS vol.8, pp.4, 2012, https://doi.org/10.5478/msl.2017.8.4.98
  50. Stimulation of Innate Immune Function by Panax ginseng after Heat Processing vol.66, pp.18, 2012, https://doi.org/10.1021/acs.jafc.8b00152
  51. Immune Enhancement Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways on RAW 264.7 Cells vol.28, pp.3, 2012, https://doi.org/10.4014/jmb.1709.09005
  52. Traditional Chinese Medicine in Multiple Sclerosis: Theory and Practice vol.4, pp.6, 2012, https://doi.org/10.1007/s40495-018-0158-x
  53. Role of inflammasome regulation on immune modulators vol.32, pp.6, 2012, https://doi.org/10.7555/jbr.32.20170120
  54. Optimization of ginseng hairy roots culture and its ginsenoside analysis vol.35, pp.4, 2012, https://doi.org/10.12925/jkocs.2018.35.4.995
  55. Mapping a novel positive allosteric modulator binding site in the central vestibule region of human P2X7 vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-39771-5
  56. Electrodeposition of Ginseng/Polyaniline Encapsulated Poly(lactic-co-glycolic Acid) Microcapsule Coating on Stainless Steel 316L at Different Deposition Parameters vol.67, pp.5, 2012, https://doi.org/10.1248/cpb.c18-00847
  57. Systems Pharmacology and Microbiome Dissection of Shen Ling Bai Zhu San Reveal Multiscale Treatment Strategy for IBD vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/8194804
  58. From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products vol.10, pp.None, 2012, https://doi.org/10.3389/fmicb.2019.02470
  59. A Comparative Study on the Effects of Different Parts of Panax ginseng on the Immune Activity of Cyclophosphamide-Induced Immunosuppressed Mice vol.24, pp.6, 2012, https://doi.org/10.3390/molecules24061096
  60. Immune-enhancing effects of a traditional herbal prescription, Kyung-Ok-Ko vol.34, pp.2, 2019, https://doi.org/10.6116/kjh.2019.34.2.41
  61. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects vol.24, pp.10, 2012, https://doi.org/10.3390/molecules24101856
  62. Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMSE-Based Metabolomics Analysis vol.24, pp.11, 2012, https://doi.org/10.3390/molecules24112188
  63. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MSE (HDMSE) for the Comprehensive Profiling and Characterization of Multicomponents from Panax japonicus by UHPLC/I vol.24, pp.15, 2019, https://doi.org/10.3390/molecules24152708
  64. Pharmacological effects of ginseng on infectious diseases vol.27, pp.5, 2012, https://doi.org/10.1007/s10787-019-00630-4
  65. Ginsenoside Rh2 reverses cyclophosphamide‐induced immune deficiency by regulating fatty acid metabolism vol.106, pp.5, 2012, https://doi.org/10.1002/jlb.2a0419-117r
  66. Development of a Validated UPLC-MS/MS Method for Analyzing Major Ginseng Saponins from Various Ginseng Species vol.24, pp.22, 2019, https://doi.org/10.3390/molecules24224065
  67. A case of Advanced Gastric cancer patient treated by Korean Medicine monotherapy vol.40, pp.4, 2012, https://doi.org/10.13048/jkm.19044
  68. In-depth profiling, characterization, and comparison of the ginsenosides among three different parts (the root, stem leaf, and flower bud) of Panax quinquefolius L. by ultra-high performance liquid ch vol.411, pp.29, 2019, https://doi.org/10.1007/s00216-019-02180-8
  69. A Review of Medicinal Plants in Cardiovascular Disorders: Benefits and Risks vol.48, pp.2, 2012, https://doi.org/10.1142/s0192415x20500147
  70. Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS vol.68, pp.7, 2012, https://doi.org/10.1021/acs.jafc.9b05568
  71. Gintonin-Enriched Fraction Suppresses Heat Stress-Induced Inflammation through LPA Receptor vol.25, pp.5, 2012, https://doi.org/10.3390/molecules25051019
  72. Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae vol.9, pp.5, 2012, https://doi.org/10.3390/cells9051107
  73. Characteristics of Panax ginseng Cultivars in Korea and China vol.25, pp.11, 2012, https://doi.org/10.3390/molecules25112635
  74. Effects of Ginseng Ingestion on Salivary Testosterone and DHEA Levels in Healthy Females: An Exploratory Study vol.12, pp.6, 2012, https://doi.org/10.3390/nu12061582
  75. Characterization of red ginseng–drug interaction by CYP3A activity increased in high dose administration in mice vol.41, pp.7, 2012, https://doi.org/10.1002/bdd.2246
  76. Ginseng integrative supplementation for seasonal acute upper respiratory infections: A systematic review and meta-analysis vol.52, pp.None, 2012, https://doi.org/10.1016/j.ctim.2020.102457
  77. Immunomodulatory Activities of Selected Essential Oils vol.10, pp.8, 2012, https://doi.org/10.3390/biom10081139
  78. Physiological responses and ginsenoside production of Panax ginseng seedlings grown under various ratios of red to blue light-emitting diodes vol.61, pp.4, 2012, https://doi.org/10.1007/s13580-020-00255-5
  79. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng vol.12, pp.9, 2012, https://doi.org/10.3390/nu12092590
  80. Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells vol.14, pp.5, 2020, https://doi.org/10.4162/nrp.2020.14.5.453
  81. Synergistic anti-liver cancer effects of curcumin and total ginsenosides vol.12, pp.10, 2012, https://doi.org/10.4251/wjgo.v12.i10.1091
  82. Lactobacillus fermentum KP-3-fermented ginseng ameliorates alcohol-induced liver disease in C57BL/6N mice through the AMPK and MAPK pathways vol.11, pp.11, 2012, https://doi.org/10.1039/d0fo02396e
  83. A Proliferation-Inducing Ligand Regulation in Polymorphonuclear Neutrophils by Panax ginseng vol.68, pp.6, 2012, https://doi.org/10.1007/s00005-020-00597-z
  84. Oroxylin A alleviates immunoparalysis of CLP mice by degrading CHOP through interacting with FBXO15 vol.10, pp.1, 2012, https://doi.org/10.1038/s41598-020-76285-x
  85. A comprehensive review of COVID-19 characteristics vol.22, pp.1, 2012, https://doi.org/10.1186/s12575-020-00128-2
  86. Comparative assessment of antimicrobial and antioxidant activity between whole plant and parts of Sphaeranthus indicus Linn. (Asteraceae) vol.6, pp.None, 2012, https://doi.org/10.1186/s40816-020-00172-1
  87. Effect of Red Ginseng Oil on Cultured Sebocytes and Outer Root Sheath Cells after Treatment with Lipopolysaccharide vol.33, pp.3, 2012, https://doi.org/10.5021/ad.2021.33.3.245
  88. Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4‐dependent MAPK activation in mouse macrophages, RAW264.7 cells vol.9, pp.1, 2012, https://doi.org/10.1002/fsn3.2020
  89. Comparative Polyphenol Composition, Antioxidant and Anticorrosion Properties in Various Parts of Panax ginseng Extracted in Different Solvents vol.11, pp.1, 2012, https://doi.org/10.3390/app11010093
  90. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8858006
  91. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial vol.45, pp.1, 2012, https://doi.org/10.1016/j.jgr.2020.08.003
  92. Combined Effects of Oligopeptides Isolated from Panax ginseng C.A. Meyer and Ostrea gigas Thunberg on Sexual Function in Male Mice vol.18, pp.5, 2012, https://doi.org/10.3390/ijerph18052349
  93. Immune Modulatory Activities of Arginyl-Fructose (AF) and AF-Enriched Natural Products in In-Vitro and In-Vivo Animal Models vol.26, pp.8, 2021, https://doi.org/10.3390/molecules26082251
  94. 인체적용시험을 통한 홍삼기반 'SSR'이 인체 피로도 감소 및 혈액성분 변화에 미치는 영향분석 vol.34, pp.2, 2012, https://doi.org/10.9799/ksfan.2021.34.2.196
  95. Transcriptome-Wide Analysis for Ginsenoside Rb3 Synthesis-Related Genes and Study on the Expression of Methyl Jasmonate Treatment in Panax ginseng vol.11, pp.5, 2012, https://doi.org/10.3390/life11050387
  96. Gibberellin Signaling Promotes the Secondary Growth of Storage Roots in Panax ginseng vol.22, pp.16, 2012, https://doi.org/10.3390/ijms22168694
  97. Pharmacological properties of ginsenosides in inflammation-derived cancers vol.476, pp.9, 2021, https://doi.org/10.1007/s11010-021-04162-w
  98. Network-based modeling of herb combinations in traditional Chinese medicine vol.22, pp.5, 2012, https://doi.org/10.1093/bib/bbab106
  99. Subcorneal pustular dermatosis as a cause of pityriasis amiantacea in a young child vol.18, pp.None, 2021, https://doi.org/10.1016/j.jdcr.2021.09.011
  100. Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-82487-8
  101. Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract vol.7, pp.4, 2021, https://doi.org/10.3390/fermentation7040238
  102. Administration of red ginseng regulates microRNA expression in a mouse model of endometriosis vol.48, pp.4, 2012, https://doi.org/10.5653/cerm.2021.04392
  103. Korean Red Ginseng Enhances Immunotherapeutic Effects of NK Cells via Eosinophils in Metastatic Liver Cancer Model vol.14, pp.1, 2012, https://doi.org/10.3390/nu14010134