• Title/Summary/Keyword: Panax ginseng seeds

Search Result 85, Processing Time 0.023 seconds

Effects of Storage Temperature and Seed Treatment on Emergence and Growth Properties of Panax ginseng at Spring-sowing (저장온도 및 종자 처리가 봄파종 인삼 출아와 생장에 미치는 영향)

  • Suh, Su Jeoung;Yu, Jin;Jang, In Bok;Moon, Ji Won;Lee, Sung Woo;Jang, In Bae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.401-407
    • /
    • 2018
  • Background: In Korea, seeds of Panax ginseng C. A. Meyer need to be stored under cold temperature and high humidity condition for months to break physiological dormancy, making storage difficult until spring-sowing. This study was conducted to test the effects of seed storage conditions and seed treatment on the emergence of seedling after spring-sowing in a nursery greenhouse. Methods and Results: After dehiscence, endocarp dried seeds in mild or completely, and wet seeds were stored in $2^{\circ}C$ and $-3.5^{\circ}C$ during winter. Storage at $-3.5^{\circ}C$ resulted in a lower emergence rate (ER) than that at $2^{\circ}C$, and additional cold ($2^{\circ}C$) treatment before or after storage at $-3.5^{\circ}C$ increased the ER. Endocarp dehydration prevented pre-germination at $2^{\circ}C$ storage and increased the ER of seeds stored at $-3.5^{\circ}C$. ER was also dependent on the batch of seeds. However, seed treatments before sowing had only limited effects on ER. Root loss was the main reason for damping-off; prolonged cold storage of seeds increased damping-off, as the detection of pathogens was not high. Conclusions: This study showed that storage conditions such as temperature and moisture content of seeds, affect the ER after spring-sowing and vitality of seedlings, suggesting further attention on seed control for secure seedling stands after spring-sowing.

Studies on the Germination of Korean Ginseng(Panax ginseng C.A.Meyer) Seed I. Influences of Nonstratified Seed on Embryo Growth and Germination (인삼 종자의 발아에 관한 연구 I. 미개갑 종자 파종이 배생장 및 발아에 미치는 영향)

  • 조재성;원준연;강희경
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.54-58
    • /
    • 1988
  • To define natural embryo growth and germination of the Korean ginseng (Panax ginseng C.A.Meyer) seed, freshly harvested and depulped seeds were seeded on nursery bed at Aug. 5 without stratification. At 100 days after seeding, embryo/endosperm length ratio of the seeds in nursery bed was higher than that of the seeds which were stratified with conventional method for 100 days. And also there was no significant difference between dehiscence ratio of the seeds in nursery bed and that from stratification with sand. The germination ratio of the ginseng seeds seeded without stratification at Aug. 5 was about 57% in average of 2 years and was not significantly lower than that of the seeds seeded after stratification at Nov. 15. And there were also no significant differencies of plant growth after germination between the ginseng seedlings from two seeding methods.

  • PDF

Seed and Root Rots of Ginseng (Panax quinquefolius L) Caused by Cylindrocarpon destructans and Fusarium spp.

  • Reeleder, R.D.;Roy, R.;Capell, B.
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Ginseng (Panax quinquefolius L.) has become one of the most valuable herb crops grown in North America. However, traditional cropping practices are favourable to disease and significant losses due to root disease are common, despite frequent use of fungicides. Seedlots are often contaminated with pathogens, however, little is known about the causes of seed decay and the role of seed pathogens as incitants of root rots. It was shown that both Fusarium spp. and Cylindrocarpon destructans were able to rot seeds and that C. destructans was more virulent than Fusarium spp. on seedling roots. A modified rose bengal agar MRBA) medium (1 g KH$_2$PO$_4$; 0.5 g MgSO$_4$; 50 mg rose bengal; 10 g dextrose; 5 g Bacto peptone; 15 g Bacto agar; 30 mg streptomycin sulfate; 250 mg ampicillin; 10 mg rifampicin; 500mg pentachloronitrobenzene; 500 mg dicloran; and 1 L distilled water) was superior to potato dextrose agar in detecting C. destuctans in diseased roots. Isolation of C. destructans from diseased seedlings arising from seeds sown in replant soil supported the hypothesis that this pathogen is a cause of ginseng replant failure in North America.

Stratification of American Ginseng Seed: Embryo Growth and Temperature (미국삼 종자의 매장처리 : 배 성장과 온도)

  • John, T.A.Proctor;Dean, Louttit
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.171-174
    • /
    • 1995
  • Freshly harvested American ginseng (Panax quinquefolium L.) seeds were stratified at two locations over each of three years. Seed development and temperature in the stratification boxes were investigated until the seed was removed 12 months later and direct-seeded in the field. During stratification and seeding (14 months) three embryo stages were identified. In Stage I of 250 days (Sept. to mid-May) embryo length increased from about 0.5 to 1.0 mm: in Stage II of 100 days (mid-May to late Aug. when seeded) length increased to 2.0 mm and in Stage III (late Aug. to late Nov.) length increased to 5.3 mm. Excerpt split width could also be placed in three stages. Changes in embryo length correlated with embryo endosperm length ratio. Insertion compression tests showed that the excerpt softened rapidly in late Stage II and throughout Stage III. The stratification box temperatures at all depths (10, 25 and 50 cm) never exceeded -2$^{\circ}C$ even when the air temperatures dropped to -13$^{\circ}C$ and were, therefore not damaging to the seeds.

  • PDF

Plant Regeneration through Somatic Embryogenesis from Mature Zygotic Embryos of Ginseng(Panax ginseng C. A. Meyer) and Flowering of Plantlets (인삼(Panax ginseng C. A. Meyer)의 성숙한 배로부터 체세포 배발생을 통한 구분화 및 유식물체의 개화)

  • 이행순
    • Journal of Plant Biology
    • /
    • v.32 no.3
    • /
    • pp.145-150
    • /
    • 1989
  • Mature zygotic embryos dissected from ginseng(Panax ginseng C. A. Meyer) seeds were cultured on Murashige and Skoog's (MS) medium containing various concentrations of 2, 4-dichlorophenoxyacetic acid(2, 4-D) and kinetin. Somatic embryos were induced directly from cotyledonary tissue or from intervening callus. The induction frequency of somatic embryos was up to 55%. Upon transfer to half-strength MS medium supplemented with 1 mg/1 6-benzyladenine(BA) and 1 mg/1 GA3, most somatic embryos developed into plantlets. Over 50% of the plantlets flowered after 4 weeks of culture and then a few bore immature fruits in vitro. Therefore, it is suggested that the juvenility of the ginseng tissue which give rise to somatic embryos does not interfere with in vitro flowering of their regenerated plantlets.

  • PDF

Optimum Storage Temperature for Spring Sowing of Panax ginseng Seeds (봄파종을 위한 인삼 종자 저장 적정 온도 연구)

  • Suh, Su Jeoung;Jang, In Bae;Jang, In Bok;Moon, Ji Won;Yu, Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.390-396
    • /
    • 2019
  • Background: Usually ginseng seeds are sown during autumn and spring. Sowing in spring often results in poorer seedling establishment than in autumn. One of the reasons for poor germination could be cold-treatment condition for breakage of physiological dormancy during winter. Here we tested the effects of storage temperature used during cold treatment on germination. Methods and Results: Germination properties were observed after dehiscent seeds were stored as wet and dry at 2℃, -2℃, -3.5℃ and alternating temperature (AT). Seed dryness and storage temperature affected germination properties (p < 0.01). Wet and AT condition germinated highest, and wet and -3.5℃ condition germinated lowest, which was 91.2% and 1.4% respectively. Mean germination time (MGT) of the wet and AT condition was faster than other treatments at 2.4 days, and the dry and -2℃ condition was the longest. Germination performance index (GPI) was highest for wet and AT condition (37.7%) and the lowest for wet and -3.5℃ condition (0.5%). The growth of above-ground and below-ground were the best for wet and 2℃ condition, and wet seeds showed better growth than dry seeds (p < 0.01). Conclusions: For cold treatment, ginseng seeds may not be stored below -2℃ for successful germination during spring sowing.

Germination of Hybrid Ginseng Seeds, and Activities of Lipoxygenase(LOX) in Panax ginseng Species (교잡인삼의 종자발아 특성 및 Lipoxygenase 활성 비교)

  • Chung, Youl-Young
    • Journal of Ginseng Research
    • /
    • v.28 no.4
    • /
    • pp.191-195
    • /
    • 2004
  • An investigation was conducted to ascertain the basic information on characteristics of embryonic tissue development among Korean Ginseng, American ginseng, $F_{1}$ hybrids and $BC_{1}F_{1}(F_{1}$ pollen back cross to $BC_{1}=Korean\;Ginseng)seeds$. The specific activities of lipoxygenase (LOX) and the protein assays were made during the above embry­onic growth period at 5 or 25 degree C. The results are summarized as follows: The fresh weights(mg) of germinating seeds were significantly different among species. Ginseng seeds were stratified at $5^{\circ}C\;for\;60\;days$ the ratios of embryo/endosperms in $P.g.,\;P.q\;or\;F_{1}\;were\;about\;90{\%}$. The ratio was in $BC_{1}F_{1},\;79.2{\%}$ during the same period. The ratios of embryo/endosperms of seeds of P.g. or P.q. germinated at $5^{\circ}C$ showed rather higher values as compared to that at $25^{\circ}C$ LOX specific activity the highest in the $F_{1}$ and decreased in the order of P.g., P.q., and $BC_{1}F_{1}$. The highest LOX specific activity was shown at 80 days after sowing, followed by 70 days sowing, the least LOX activity was shown at 60 days.

Effect of Seed Dehydration and Temperature during Cold-Stratification on the Seed Quality of Panax ginseng C. A. Meyer (인삼 종자의 생리적 휴면타파기간 중 건조처리 및 저장온도가 종자 건전성에 미치는 영향)

  • Suh, Su Jeoung;Jang, In Bae;Yu, Jin;Jang, In Bok;Park, Hong Woo;Seo, Tae Cheol;Kweon, Ki Bum
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.209-216
    • /
    • 2017
  • Background: Dehisced ginseng seeds need to be stored at cold temperatures for around 3 months to break their physiological dormancy, and thus, to aid in gemination. In the presence of high moisture in such an environment, seed spoilage and pre-germination may lower seed quality and productivity. To improve seed quality during cold-stratification, the effects of seed dehydration and temperature were tested. Methods and Results: In early December, dehisced ginseng seeds were dehydrated at 4 different levels and stored at $2^{\circ}C$ $-2^{\circ}C$, and $-20^{\circ}C$ for 3 months. Germination was carried out on the filter papers moistened with distilled water; emergence of root, shoot, and seed spoilage were assessed. Seed viability was examined by the tetrazolium test. More than 90% of the seeds stored at $2^{\circ}C$ and $-2^{\circ}C$ without drying or endocarp dehydration germinated, but seeds that were dehydrated to have a moisture content (MC) below 31% showed poor germination and lost their viability. In addition, the seeds stored at $-20^{\circ}C$ failed to show effective germination. Conclusions: Seed storage after endocarp dehydration might help to improve seed quality and increase seedling's ability to stand during the spring-sowing of ginseng.

Identification of Endophytic Bacteria in Panax ginseng Seeds and Their Potential for Plant Growth Promotion (인삼종자로부터 분리된 내생균의 동정과 식물생장 촉진 관련 활성의 평가)

  • Um, Yurry;Kim, Bo Ra;Jeong, Jin Ju;Chung, Chan Moon;Lee, Yi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.306-312
    • /
    • 2014
  • Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.

Relationship Between Storage Periods and Germination Ability of Dehisced Seeds of Panax ginseng C. A. Meyer (저장기간과 인삼종자 발아력과의 관계)

  • Lee, Jang-Ho;Lee, Sung-Sik;Ahn, In-Ok;Kang, Jae-Yong;Lee, Myoung-Gu
    • Journal of Ginseng Research
    • /
    • v.28 no.4
    • /
    • pp.215-218
    • /
    • 2004
  • This study were conducted to investigate the viability and germination of dehisced Panax ginseng seeds stored for long period in the storage chamber with $5^{\circ}C\;and\;30{\%}$ humudity. The staining reaction times for viability test were 150 min, 90 in, 60 min at $0.1{\%},\;0.5{\%}\;and\;1{\%}$ triphenyltetrazolim chloride(TTC), respectively. the more the storage period, the less the healthy seeds ratio. It was $96.6{\%},\;89.2{\%},\;63.4{\%}$ for 1-year storage, 7-years storage, 9-years storage, respectively. Germination ratio were $84.0{\%},\;80.5{\%},\;73.5{\%},\;2.5{\%}$ for 1-year stroage, 6-years storage, 7-years storage and 9-years storage, respectively. Therefore it was confirmed that ginseng seed can be stored up to 6-7 years.