• Title/Summary/Keyword: Panax ginseng ginsenoside

Search Result 626, Processing Time 0.029 seconds

Triterpenoid Ginsenoside Biosynthesis in Panax ginseng C. A. Meyer (인삼에서의 트리터페노이드 진세노사이드의 생합성)

  • Kim, Yu-Jin;Lee, Ok-Ran;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.20-20
    • /
    • 2012
  • Isoprenoids represent the most diverse group of metabolites, which are functionally and structurally identified in plant organism to date. Ginsenosides, glycosylated triterpenes, are considered to be the major pharmaceutically active ingredient of ginseng. Its backbones, categorized as protopanaxadiol (PPD), protopanaxatriol (PPT), and oleanane saponin, are synthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene mediated with dammarenediol synthase or beta-amyrin synthase. The rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), which is the first committed step enzyme catalyzes the cytoplasmic mevalonate (MVA) pathway for isoprenoid biosynthesis. DXP reductoisomerese (DXR), yields 2-C-methyl-D-erythritol 4-phosphate (MEP), is partly involved in isoprenoid biosynthesis via plastid. Squalene synthase and squalene epoxidase are involved right before the cyclization step. The triterpene backbone then undergoes various modifications, such as oxidation, substitution, and glycosylation. Here we will discuss general biosynthesis pathway for the production of ginsenoside and its modification based on their subcellular biological functions.

  • PDF

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Enhanced Rg3 negatively regulates Th1 cell responses

  • Cho, Minkyoung;Choi, Garam;Shim, Inbo;Chung, Yeonseok
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods: Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve $CD4^+$ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results: KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma ($IFN{\gamma}$) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion: Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases.

Effects of steaming on saponin compositions and antiproliferative activity of Vietnamese ginseng

  • Le, Thi Hong Van;Lee, Seo Young;Lee, Gwang Jin;Nguyen, Ngoc Khoi;Park, Jeong Hill;Nguyen, Minh Duc
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.274-278
    • /
    • 2015
  • Background: Steaming of ginseng is known to change its chemical composition and biological activity. This study was carried out to investigate the effect of different steaming time-scales on chemical constituents and antiproliferative activity of Vietnamese ginseng (VG). Methods: VG was steamed at $105^{\circ}C$ for 2-20 h. Its saponin constituents and antiproliferative activity were studied. The similarity of chemical compositions between steamed samples at $105^{\circ}C$ and $120^{\circ}C$ were compared. Results: Most protopanaxadiol and protopanaxatriol ginsenosides lost the sugar moiety at the C-20 position with 10-14 h steaming at $105^{\circ}C$ and changed to their less polar analogues. However, ocotillol (OCT) ginsenosides were reasonably stable to steaming process. Antiproliferative activity against A549 lung cancer cells was increased on steaming and reached its plateau after 12 h steaming. Conclusion: Steaming VG at $105^{\circ}C$ showed a similar tendency of chemical degradation to the steaming VG at $120^{\circ}C$ except the slower rate of reaction. Its rate was about one-third of the steaming at $120^{\circ}C$.

Determination of Total Phenolic Compounds from Korean Red Ginseng, and Their Extraction Conditions (고려홍삼의 총 페놀성환의 정량 및 그 추출조건)

  • 이종원;도재호;이성계;양재원
    • Journal of Ginseng Research
    • /
    • v.24 no.2
    • /
    • pp.64-67
    • /
    • 2000
  • This study was carried out to investigate the possible determination of total phenolic compounds by Folin-Denis method from Panax ginseng C.A. Meyer and their extraction conditions. It was possible to apply the method for determination of total phenolic compounds from Korean red ginseng. But 3 kinds of amino acids such as tyrosine, cystein and tryptophan, and 3 kinds of vitamins such as ascorbic acid, pyridoxin HCI and thiamine HCI affected strongly the colorization by the method. Effective alcoholic solvent for the extraction was 60% ethanol, appropriate extraction temperature, time and times were 40-80。C, 1-2 hours and 3 times, respectively.

  • PDF

Study on the Hypoglycemic Action of the Fat Soluble Fraction of Panax ginseng C.A. Meyer in Streptozotocin Induced Diabetic Rats (인삼 지용성분획의 고혈당 강하작용에 관한 연구)

  • Joo, Chung-No;Koo, Ja-Hyun;Lee, Hee-Bong
    • Journal of Ginseng Research
    • /
    • v.17 no.1
    • /
    • pp.13-21
    • /
    • 1993
  • We attempted in this study to understand the hypoglycemic action of the fat soluble fraction of red ginseng roots in streptozotocin injected diabetic rats, through its actions on several enzymes relating to carbohydrate metabolism of the 1eve1 to compare with those of ginsenosides in streptozotocin injected diabetic rats. It was realized that the increased level of glucose, ketone bodies, lactate, nonesterified fatty acids and triacylglycerol in blood was significantly decreased and the decreased liver glycogen content of streptozotocin injected rats were appreciably moderated by intraperitoneal injection of the fat soluble fraction of red ginseng roots as shown in the saponin injected diabetic rats. The deceased activities of liver enzymes relating to carbohydrate metabolism such as phosphofructokinase, glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and acetyl CoA carboxylase of streptozotocin induced diabetic rats were also sufficiently modified by the intraperitoneal injection of the above fat soluble fraction as shown in the ginsenoside injected streptozotocin induced rats.

  • PDF