• Title/Summary/Keyword: Panax ginseng ginsenoside

검색결과 626건 처리시간 0.025초

Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.236-241
    • /
    • 2019
  • Background: Thromboxane A2 ($TXA_2$) induces platelet aggregation and promotes thrombus formation. Although ginsenoside Ro (G-Ro) from Panax ginseng is known to exhibit a $Ca^{2+}-antagonistic$ antiplatelet effect, whether it inhibits $Ca^{2+}-dependent$ cytosolic phospholipase $A_2$ ($cPLA_{2{\alpha}}$) activity to prevent the release of arachidonic acid (AA), a $TXA_2$ precursor, is unknown. In this study, we attempted to identify the mechanism underlying G-Ro-mediated $TXA_2$ inhibition. Methods: We investigated whether G-Ro attenuates $TXA_2$ production and its associated molecules, such as cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS), $cPLA_{2{\alpha}}$, mitogen-activated protein kinases, and AA. To assay COX-1 and TXAS, we used microsomal fraction of platelets. Results: G-Ro reduced $TXA_2$ production by inhibiting AA release. It acted by decreasing the phosphorylation of $cPLA_{2{\alpha}}$, p38-mitogen-activated protein kinase, and c-Jun N-terminal kinase1, rather than by inhibiting COX-1 and TXAS in thrombin-activated human platelets. Conclusion: G-Ro inhibits AA release to attenuate $TXA_2$ production, which may counteract $TXA_2-associated$ thrombosis.

Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments

  • Chen, Chen;Zhang, Haifeng;Xu, Hongliang;Zheng, Yake;Wu, Tianwen;Lian, Yajun
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.499-507
    • /
    • 2019
  • Background: Ginsenoside Rb1 (Rb1), a dominant component from the extract of Panax ginseng root, exhibits neuroprotective functions in many neurological diseases. This study was intended to investigate whether Rb1 can attenuate cisplatin-induced memory impairments and explore the potential mechanisms. Methods: Cisplatin was injected intraperitoneally with a dose of 5 mg/kg/wk, and Rb1 was administered in drinking water at the dose of 2 mg/kg/d to rats for 5 consecutive wk. The novel objects recognition task and Morris water maze were used to detect the memory of rats. Nissl staining was used to examine the neuron numbers in the hippocampus. The activities of superoxide dismutase, glutathione peroxidase, cholineacetyltransferase, acetylcholinesterase, and the levels of malondialdehyde, reactive oxygen species, acetylcholine, tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$, and interleukin-10 were measured by ELISA to assay the oxidative stress, cholinergic function, and neuroinflammation in the hippocampus. Results: Rb1 administration effectively ameliorates the memory impairments caused by cisplatin in both novel objects recognition task and Morris water maze task. Rb1 also attenuates the neuronal loss induced by cisplatin in the different regions (CA1, CA3, and dentate gyrus) of the hippocampus. Meanwhile, Rb1 is able to rescue the cholinergic neuron function, inhibit the oxidative stress and neuroinflammation in cisplatin-induced rat brain. Conclusion: Rb1 rescues the cisplatin-induced memory impairment via restoring the neuronal loss by reducing oxidative stress and neuroinflammation and recovering the cholinergic neuron functions.

Ginsenoside Rb1 inhibits monoiodoacetate-induced osteoarthritis in postmenopausal rats through prevention of cartilage degradation

  • Aravinthan, Adithan;Hossain, Mohammad Amjad;Kim, Bumseok;Kang, Chang-Won;Kim, Nam Soo;Hwang, Ki-Chul;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.287-294
    • /
    • 2021
  • Background: Ginsenoside Rb1 (G-Rb1), one of the major active compounds in Panax ginseng, has already been shown to reduce inflammation in various diseases. Osteoarthritis (OA) has traditionally been considered a degenerative disease with degradation of joint articular cartilage. However, recent studies have shown the association of inflammation with OA. In the present study, we investigated whether Rb1 had an antiinflammatory effect on monoiodoacetate (MIA)-induced OA in ovariectomized rats as a model of postmenopausal arthritis. Methods: G-Rb1 at a dosage of 3 and 10 ㎍/kg body weight was administered every 3 days intraarticularly for a period of 4 weeks to observe antiarthritic effects. Diclofenac (10 mg/kg) served as a positive control. Results: The administration of Rb1 significantly ameliorated OA inflammatory symptoms and reduced serum levels of inflammatory cytokines. Furthermore, G-Rb1 administration considerably enhanced the expression of bone morphogenetic protein-2 and collagen 2A and reduced the levels of matrix metalloproteinase-13 genes, indicating a chondroprotective effect of G-Rb1. G-Rb1 also significantly reduced the expression of several inflammatory cytokines/chemokines (interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)/CCL-2, interleukin [IL]-1β, and IL-6). Histological analysis demonstrated that G-Rb1 significantly attenuated the pathological changes in MIA-induced OA in ovariectomized rats. Safranin O and toluidine blue staining further demonstrated that G-Rb1 effectively prevented the degradation of cartilage and glycosaminoglycans, respectively. Conclusion: Overall, our results suggest that G-Rb1 exerts cartilage protective effect on MIA-induced ovariectomized OA rats, by inhibiting inflammatory mediators such as IL-6, IL-1β, MCP-1/CCL-2, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). These results shed a light on possible therapeutic application of G-Rb1 in OA.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim;Myung-Ho Kim;Ji In Kang;Jong-In Baek;Byeong-Min Jeon;Ho Min Kim;Sun-Chang Kim;Won-Il Jeong
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.89-97
    • /
    • 2024
  • Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

해양부산물 아미노산액비 및 유용미생물시용이 인삼의 품질에 미치는 영향 (Effect of Korean Effective Microorganisms and Seafood Amino Acid Fertilizer on the Root Quality of Panax ginseng)

  • 안승원
    • 한국환경과학회지
    • /
    • 제21권8호
    • /
    • pp.1023-1030
    • /
    • 2012
  • Contents of ginsenosides 7 subordinations of two-year ginseng (fresh ginseng) is 1.27% and three-year ginseng is 2.09%, so the three-year ginseng root increased 64.9% compared to the two-year root. Compared with the comparison group, ginsenosides component content of KEM+SAF-applied group increased 24% in case of the two-year root and 20% in case of the three-year root. In vitamin C content, two-year root showed 59.4% higher and three-year root showed 37.7% higher in KEM+SAF applied group compared with the comparison group. In case of vitamin E, the two-year root indicated 5.6% higher and three-year root indicated 1.5% higher in KEM+SAF applied group compared with the comparison group, but there is no significant difference. In phytosterol three components (campesterol, stigmasterol, sitosterol), two-year root showed 25.3, 3.6, 14.1% higher for each, and three-year root showed 23.6, 6.8, 12.9% higher in KEM+SAF applied group and 14.4% was higher on average. In DPPH, two-year root indicated 34.4% higher and three-year root indicated 42.4% higher in KEM+SAF applied group compared to the comparison group. To sum up the results, KEM+SAF applied group showed (1)22% ginsenosides components content, (2)48.6% vitamin C content, (3)3.6% vitamin E content, (4)14.4% phytosterol content, (5)38.4% DPPH higher averagely compared to the comparison group.

Re-evaluation of physicochemical and NMR data of triol ginsenosides Re, Rf, Rg2, and 20-gluco-Rf from Panax ginseng roots

  • Cho, Jin-Gyeong;In, Seo-Ji;Jung, Ye-Jin;Cha, Byeong-Ju;Lee, Dae-Young;Kim, Yong-Bum;Yeom, Myeonghun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.116-122
    • /
    • 2014
  • Ginseng roots were extracted with aqueous methanol, and extracts were suspended in water and extracted successively with ethyl acetate and n-butanol. Column chromatography using the n-butanol fraction yielded four purified triol ginseng saponins: the ginsenosides Re, Rf, Rg2, and 20-gluco-Rf. The physicochemical, spectroscopic, and chromatographic characteristics of the ginsenosides were measured and compared with reports from the literature. For spectroscopic analysis, two-dimensional nuclear magnetic resonance (NMR) methods such as $^1H$-$^1H$ correlation spectroscopy, nuclear Overhauser effect spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond connectivity were employed to identify exact peak assignments. Some peak assignments for previously published $^1H$-and $^{13}C$-NMR spectra were found to be inaccurate. This study reports the complete NMR assignment of 20-gluco-Rf for the first time.

홍삼 비사포닌 분획물의 항불안 및 항우울에 대한 효과 (Anxiolytic and Antidepressive Effect of Non-saponin Fraction of Korean Red Ginseng)

  • 이범준;김정우;지은영;윤승연;이상명;류재환
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.143-148
    • /
    • 2009
  • Objectives : Anxiety and depression are stress-related disorders. Their prevalence are increasing rapidly. Ginseng is the root of Panax ginseng C.A. Meyer (Araliaceae) which has been used for many centuries in asian region. Anxiolytic effect is one of the popular effects of ginseng. Several studies reported saponin fraction of ginseng, including ginsenoside, is a major ingredient of anxiolytic effect. In present study, we investigated anxiolytic-like and antidepressant-like effect of non-saponin fraction in mice. Material and Method : Mice were divided into five groups. Experimental groups were administered non-saponin fractions (25 mg/kg; nsp25, 50 mg/kg; nsp50, 100 mg/kg; nsp100) respectively once a day in the morning at 9am for 1 week. Then, we performed elevated plus-maze (EPM) test for investigating the anxiolytic-like effect and forced swimming test (FST) for investigating the antidepressant-like action. Results : Non-saponin fraction 50 mg/kg group increased frequency and time spent (p<0.05) in open arm on EPM test and decreased immobility time (p<0.05) on FST compared with control group. Conclusions : We suggest that non-saponin fraction has anxiolytic-like effect and antidepressant like effect in mice.

지역별 4년근 산양삼의 생육특성 및 진세노사이드 함량 간의 상관관계 분석 (Correlation analysis between growth characteristics and ginsenoside contents of 4-year-old wild-simulated ginseng (Panax ginseng C.A. Meyer) with different cultivation sites)

  • 윤영배;허정훈;정대희;김지아;엄유리
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.253-259
    • /
    • 2022
  • 본 연구의 목적은 서로 다른 지역에서 재배된 4년근 산양삼의 생육특성과 진세노사이드 함량 간의 상관관계를 조사하는 것이다. 유효 인산을 제외한 대부분의 토양 특성은 다른 재배지에서 보다 평창에서 유의적으로 높았다. 뿌리 길이와 세근수를 제외한 생육특성은 다른 재배지보다 평창 재배지에서 유의적으로 높게 나타났다. 8종의 진세노사이드 함량의 경우, 무주 재배지의 F2-AS 함량은 다른 재배지보다 높았으며, 영주 재배지의 F1 함량은 유의적으로 높게 나타났다. 영월 재배지에서는 Rb1과 Re-p의 함량이 유의적으로 높았고, 평창 재배지에서 Ro의 함량은 다른 재배지보다 유의적으로 높게 나타났다. 뿌리 길이와 토양 pH는 각각 토양특성 및 산양삼의 생육특성과 유의적인 상관관계를 보이지 않았다. 대부분의 생육특성은 전기전도도 및 유기물 함량, 전질소 함량, 치환성양이온(K+, Ca2+, Mg2+), 양이온치환용량과 유의적인 정의 상관관계를 보였다. Rb1과 Re-p는 세근수를 제외한 대부분의 산양삼 생육특성과 유의적인 부의 상관관계를 보였다. Ro는 줄기 길이, 줄기당 소엽수, 소엽 길이, 소엽 넓이, 뿌리 두께와 유의적인 정의 상관관계를 보였다. 본 연구의 이러한 결과는 4년근 산양삼의 생육특성과 진세노사이드 함량 간의 상관관계를 조사함으로써 품질 기준을 수립하기 위해 유용한 정보를 제공하는 데 도움이 될 수 있을 것이다.

새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성 (Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process)

  • 김염;김연주;전지나;왕초;민진우;정선영;양덕춘
    • 한국자원식물학회지
    • /
    • 제25권4호
    • /
    • pp.473-481
    • /
    • 2012
  • 구증구포방법은 기존의 홍삼제조방법에서와 같이 9회 반복 과정으로 새로운 신규사포닌 등 성분변화가 일어나지만 시간이 오래 걸리고 복잡하며 어떤 특수 성분이 얼마나 증가 되는지 보고 되어 있지 않다. 또한 기존의 구증구포방법은 제조공정 중 건조시 보통 $60^{\circ}C$에서 열풍건조를 하기 때문에 건조시 관리의 부족으로 간혹 벤조피렌에 노출되는 경우가 있다. 본 방법은 새로운 자동 구증구포방법으로 제조시간이 약 2배정도 단축되며 특히 건조시 습열냉각건조를 통하기 때문에 벤조피렌함량이 거의 검출되지 않았다. 또한 사포닌 변환 등은 기존 구증구포방법과 같이 사포닌 변화가 일어나 홍삼에서만 나타나는 Rg3와 기타 효능활성물질 등이 분석되었다. 인삼사포닌의 경우에는 증포횟수가 증가함에 따라 흡수가 어려운 major ginsenoside(Rg1, Re, Rb1, Rc, Rb2 및 Rd)의 함량이 점차적으로 감소되고 대신 흡수가 빠르고 항암활성이 강한 minor ginsenoside (Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 및 Rg5)의 함량이 점차적으로 증가하였다. 특히 diol계 사포닌인 ginsenosides Rb1, Rb2, Rc 및 Rd는 Rg3, Rk1 및 Rg5로 전환되었고, triol계 사포닌인 ginsenosides Rg1 및 Re는 Rh1, Rg2로 전환되었다. 수삼에서의 환원당, 산성다당체 및 총 페놀 화합물 함량은 7회까지 유의적으로 증가하였고 8회부터 점차 감소하는 경향을 보였다. DPPH 라디칼 소거활성은 7회까지 점차적으로 감소하여 $IC_{50}$값이 68% 감소되는 것으로 나타났으며 7회부터 9회까지는 큰 유의적 차이가 없었다. 결론적으로 본 자동 구중구포방법은 기존의 방법과 물질생성은 거의 비슷하지만 시간이 단축되고 벤조피렌 함량이 거의 검출되지 않아 앞으로 고부가가치 인삼산업에 많은 도움을 줄 것으로 생각된다.