• 제목/요약/키워드: Panax ginseng ginsenoside

검색결과 626건 처리시간 0.037초

Jurkat T 세포에서 Ginsenoside-Rg1이 p561ck Kinase 활성과 세포증식에 미치는 영향 (Stimulatory Effects of Ginsenoside-Rg1 on p56lck Kinase and Cell Proliferation in Jurkat T Cells)

  • Hong, Hee-Youn;Na, Do-Seong;Kwon, Tae-Ik;Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Journal of Ginseng Research
    • /
    • 제19권2호
    • /
    • pp.117-121
    • /
    • 1995
  • We studied the effects of ginsenoside-$Rg_1$ (G-$Rg_1$) extracted from Panax ginseng C.A. Meyer on $p56^{kk}$ kinase and cell proliferation in Jurkat T cells. $p56^{kk}$ was maximally activated within 5 min after the treatment of 16.7 $\mu\textrm{g}$/ml of G-$Rg_1$ increasing the activity by 1.2-2 times relative to untreated control, thereafter its activity was gradually decreased to the level of untreated control. The action of EGTA on the kinase was altered by the addition of G-$Rg_1$, accompanying the band shift of $p56^{kk}$ to $p60^{kk}$. In addition, G-$Rg_1$promoted cell proliferation in a concentration-dependent manner. These results suggest that G-$Rg_1$ may be involved in T cell receptor-CD3 (TCR) signaling via the activation of $p56^{kk}$ and the chance of cellular calcium concentration.

  • PDF

The Changes of Ginsenoside Patterns in Red Ginseng Processed by Organic Acid Impregnation Pretreatment

  • Kim, Mi-Hyun;Lee, Young-Chul;Choi, Sang-Yoon;Cho, Chang-Won;Rho, Jeong-Hae;Lee, Kwang-Won
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.497-503
    • /
    • 2011
  • In order to enhance bioactive functionalities of ginseng, an acid impregnation processing was applied as a pre-treatment in producing red ginseng. Acid impregnation studies were conducted, and acids (ascorbic, malic, and citric acid) were selected. The optimal concentration of each acid was investigated in this study in terms of ginsenoside contents. The most concerned ginsenoside, $Rg_3$ was increased by ascorbic, malic, and citric acid pre-treated red ginseng up to 1 M acid concentration. In the case of ascorbic acid pre-treated red ginseng, $Rg_2$ concentration was increased depending on acid concentrations. Citric acid pre-treatment enhanced $Rg_2$, $Rg_3$, and $Rh_1+Rh_2$ formation in red ginseng. Therefore, ginsenoside patterns in red ginseng could be changed by acid impregnation pre-treatment depending on acid concentration and acid types. This research is expected to contribute to the development of the ginseng industry via new red ginseng products with selective and intensified functionality.

Change of Ginsenoside Profiles in Processed Ginseng by Drying, Steaming, and Puffing

  • Shin, Ji-Hye;Park, Young Joon;Kim, Wooki;Kim, Dae-Ok;Kim, Byung-Yong;Lee, Hyungjae;Baik, Moo-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.222-229
    • /
    • 2019
  • Korean ginseng (Panax ginseng Meyer) was processed by drying, steaming, or puffing, and the effects of these processes on the ginsenoside profile were investigated. The main root of 4-year-old raw Korean ginseng was dried to produce white ginseng. Steaming, followed by drying, was employed to produce red or black ginseng. In addition, these three varieties of processed ginseng were puffed using a rotational puffing gun. Puffed ginseng showed significantly higher extraction yields of ginsenosides (49.87-58.60 g solid extract/100 g of sample) and crude saponin content (59.40-63.87 mg saponin/g of dried ginseng) than non-puffed ginseng, respectively. Moreover, puffing effectively transformed the major ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) of ginseng into minor ones (F2, Rg3, Rk1, and Rg5), comparable to the steaming process effect on the levels of the transformed ginsenosides. However, steaming takes much longer (4 to 36 days) than puffing (less than 30 min) for ginsenoside transformation. Consequently, puffing may be an effective and economical technique for enhancing the extraction yield and levels of minor ginsenosides responsible for the major biological activities of ginseng.

고속액체(高速液體) chromatography에 의(依)한 Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$의 대량분리(大量分離) (Larqe guantity isolation of Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ in Panax ginseng C.A. Meyer by High Performance Liquid Chromatography)

  • 최진호;김우정;배효원;오성기;대포언길
    • Applied Biological Chemistry
    • /
    • 제23권4호
    • /
    • pp.199-205
    • /
    • 1980
  • 인삼의 유효약리성분으로 밝혀진 saponin중의 각 ginsenosides를 효과적이고 능률적으로 분리하기 위하여 대량분취전용 고속액체 chromatograph인 preparative HPLC의 응용을 검토하였다. 조(粗) saponin획분을 preparative HPLC인 Prep LC/system-500를 사용하여 부분분획을 하고 각 획분에 함유되어 있는 ginsenosides의 조성을 Analytical HPLC로 동정한 후 Semi-preparative HPLC를 사용하여 인삼주성분 saponin을 단리했다. 그 결과 인삼 주성분 saponin인 $ginsenoside-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$은 약 20 mg / 2.0 ml / injection으로 chromatography를 행하여 $300{\sim}400mg/day$로 대량분취가 가능하였다. 따라서 ginsenosides의 약리 및 임상효능 연구에 크게 기여하게 될 것이다.

  • PDF

암치료를 위한 네트워크 기반 접근방식 활용 시스템 수준 연구 (Investigating herbal active ingredients and systems-level mechanisms on the human cancers)

  • 이원융
    • 대한한의학방제학회지
    • /
    • 제30권3호
    • /
    • pp.175-182
    • /
    • 2022
  • Objective : This study aims to investigate the active ingredients and potential mechanisms of the beneficial herb on human cancers such as the liver by employing network pharmacology. Methods : Ingredients and their target information was obtained from various databases such as TM-MC, TTD, and Drugbank. Related protein for liver cancer was retrieved from the Comparative Toxicogenomics Database and literature. A hypergeometric test and gene set enrichment analysis were conducted to evaluate associations between protein targets of red ginseng (Panax ginseng C. A. Meyer) and liver cancer-related proteins and identify related signaling pathways, respectively. Network proximity was employed to identify active ingredients of red ginseng on liver cancer. Results : A compound-target network of red ginseng was constructed, which consisted of 363 edges between 53 ingredients and 121 protein targets. MAPK signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, TGF-beta signaling pathway, and cell cycle pathway was significantly associated with protein targets of red ginseng. Network proximity results indicated that Ginsenoside Rg1, Acetic Acid, Ginsenoside Rh2, 20(R)-Ginsenoside Rg3, Notoginsenoside R1, Ginsenoside Rk1, 2-Methylfuran, Hexanal, Ginsenoside Rd, Ginsenoside Rh1 could be active ingredients of red ginseng against liver cancer. Conclusion : This study suggests that network-based approaches could be useful to explore potential mechanisms and active ingredients of red ginseng for liver cancer.

Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice

  • Yoo, Yung Choon;Lee, Junglim;Park, Seok Rae;Nam, Ki Yeul;Cho, Young Ho;Choi, Jae Eul
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.80-86
    • /
    • 2013
  • Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 ${\mu}g$/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.

인삼성분 및 제제의 생체막 보호 효과에 대한 연구 (Preliminary Investigation of Membrane Modifying Effects of Ginseng Components)

  • 한덕룡;김창종
    • Journal of Ginseng Research
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 1987
  • 인삼추출물(95%, 50% 에탄올 및 수침액) ginsenoside Re 및 ginsana G115를 공식약물로 해서 thioacetamide로 intoxication 시킨 동물에 대한 in vitro, in vivo test를 통해 예방적 효과 및 치료적인 효과에 대해서 실험하였다. 항산화작용에 있어서 ginsenoside Re, 수침액, Ginsana C 115가 통계적으로 유효하였으며 zine sulfate turbidity test에서는 95% 에탄올 추출물과 ginsenoside Re가, GOT에 대해서는 Ginsana G 115, GPT에 대해서는 ginsenoside Re가 통계적인 유효성을 나타냈다. Venom toxin과 compound 48/80에 의한 mast cell의 탈과립현상에 대한 방어시험에서 50% 에탄올 추출물, 수침물, 95% 에탄올 추출물 및 Ginsana G 115가 유효하였다.

  • PDF

Effect of Growth Conditions on Saponin Content and Ginsenoside Pattern of Panax ginseng

  • Lee, Mee-Hyoung;Park, Hoon;Lee, Chong-Hwa
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1987년도 Proceedings of Korea-Japan Panax Ginseng Symposium 1987 Seoul Korea
    • /
    • pp.89-107
    • /
    • 1987
  • For the elucidation of significance of saponin as quality criterion of ginseng ginsenoside content(GC) and ginsenoside pattern similarity(GPS) by simple correlation were investigated in relation to red ginseng quality factors, age, plant part, harvest season, mineral nutrition, soil physical characteristics, growth light and temperature, shading material, growth location, physiological disease and crop stand through survey of ginseng plantstions, field experiments, water culture and phytotron experiments. Effect of tissue culture was also reviewed. GC was negatively correlated with good quality of red ·ginseng and positively with bad quality. Age did not show any consistency with GC but GPS was less with the increase of age difference. GPS was less or not significant between taproot that is lowest in GC and epidermis highest, and significant between leaf and taproot. Harvest season marked with the lowest GC and Pattern was also different. Nutrient imbalance, the increase of hazardous soil nutrient and physical condition to growth increased GC, but GPS was little different. The higher the growth lights intensity and temperature the higher the GC but GPS was little changed. Root rust increased GC, but root scab decreased it. Sponge-like and inside cavity phenomena increased GC. Ginsenoside pattern of cultured tissues and rootlet showed great variation. These results strongly indicate that there are optimum saponin content and ginsenoside pattern and that these are accomplished under the optimum growth condition.

  • PDF

Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.264-269
    • /
    • 2018
  • Panax ginseng, also called Asian or Korean ginseng, has long been traditionally used in Korea and China to treat various diseases. The major active ingredients of P. ginseng are ginsenosides, which have been shown to have a variety of therapeutic effects, including antioxidation, anti-inflammatory, vasorelaxation, antiallergic, antidiabetic, and anticancer. To date, approximately 40 ginsenoside components have been reported. Current research is concentrating on using a single ginseng compound, one of the ginsenosides, instead of the total ginseng compounds, to determine the mechanisms of ginseng and ginsenosides. Recent in vitro and in vivo results show that ginseng has beneficial effects on cardiac and vascular diseases through efficacy, including antioxidation, control of vasomotor function, modulation of ion channels and signal transduction, improvement of lipid profiles, adjustment of blood pressure, improvement in cardiac function, and reduction in platelet adhesion. This review aims to provide valuable information on the traditional uses of ginseng and ginsenosides, their therapeutic applications in animal models and humans, and the pharmacological action of ginseng and ginsenosides.