• Title/Summary/Keyword: Panax genus

Search Result 34, Processing Time 0.028 seconds

THE ECOLOGY, PHYTOGEOGRAPHY AND ETHNOBOTANY OF GINSENG

  • Hu Shiu Ying
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.149-157
    • /
    • 1978
  • Ginseng is the English common name for the species in the genus Panax. This article gives a broad botanical review including the morphological characteristics, ecological amplitude, and the ethnobotanical aspect of the genus Panax. The species of Panax are adapted for life in rich loose soil of partially shaded forest floor with the deciduous trees such as linden, oak, maple, ash, alder, birch, beech, hickory, etc. forming the canopy. Like their associated trees, all ginsengs are deciduous. They require annual climatic changes, plenty of water in summer, and a period of dormancy in winter. The plant body of ginseng consists of an underground rhizome and an aerial shoot. The rhizome has a terminal bud, prominent leafscars and a fleshy root in some species. It is perennial. The aerial shoot is herbaceous and annual. It consists of a single slender stem with a whorl of digitately compound leaves and a terminal umbel bearing fleshy red fruits after flowering. The yearly cycle of death and renascence of the aerial shoot is a natural phenomenon in ginseng. The species of Panax occur in eastern North America and eastern Asia, including the eastern portion of the Himalayan region. Such a bicentric generic distributional pattern indicates a close floristic relationship of the eastern sides of two great continental masses in the northern hemisphere. It is well documented that genera with this type of disjunct distribution are of great antiquity. Many of them have fossil remains in Tertiary deposits. In this respect, the species of Panax may be regarded as living fossils. The distribution of the species, and the center of morphological diversification are explained with maps and other illustrations. Chemical constituents confirm the conclusion derived from morphological characters that eastern Asia is the center of species concentration of Panax. In eastern North America two species occur between longitude $70^{\circ}-97^{\circ}$ Wand latitude $34^{\circ}-47^{\circ}$ N. In eastern Asia the range of the genus extends from longitude $85^{\circ}$ E in Nepal to $140^{\circ}$ E in Japan, and from latitude $22^{\circ}$ N in the hills of Tonkin of North Vietnam to $48^{\circ}$ N in eastern Siberia. The species in eastern North America all have fleshy roots, and many of the species in eastern Asia have creeping stolons with enlarged nodes or stout horizontal rhizomes as storage organs in place of fleshy roots. People living in close harmony with nature in the homeland of various species of Panax have used the stout rhizomes or the fleshy roots of different wild forms of ginseng for medicine since time immemorial. Those who live in the center morphological diversity are specific both in the application of names for the identification of species in their communication and in the use of different roots as remedies to relieve pain, to cure diseases, or to correct physiological disorders. Now, natural resources of wild plants with medicinal virtue are extremely limited. In order to meet the market demand, three species have been intensively cultivated in limited areas. These species are American ginseng (P. quinquefolius) in northeastern United States, ginseng (P. ginseng) in northeastern Asia, particularly in Korea, and Sanchi (P. wangianus) in southwestern China, especially in Yunnan. At present hybridization and selection for better quality, higher yield, and more effective chemical contents have not received due attention in ginseng culture. Proper steps in this direction should be taken immediately, so that our generation may create a richer legacy to hand down to the future. Meanwhile, all wild plants of all species in all lands should be declared as endangered taxa, and they should be protected from further uprooting so that a. fuller gene pool may be conserved for the. genus Panax.

  • PDF

The Detection of Plant Viruses in Korean Ginseng (Panax ginseng) through RNA Sequencing

  • Lee, Hong-Kyu;Kim, So-Yeon;Yang, Hee-Ji;Lee, Da-Som;Kwon, Boram;Lee, Dong-Yun;Oh, Jonghee;Lee, Su-Heon
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.643-650
    • /
    • 2020
  • Korean ginseng (Panax ginseng) is a dicotyledonous, medicinal, perennial plant belonging to the genus Panax of the family Araliaceae. We investigated the occurrence and incidence of plant viruses in Panax ginseng in Korea. A total of 656 leaf samples were combined into one and total RNA was extracted from the polled sample, using RNA sequencing (RNA-Seq), a metatranscriptome analysis of the plant virome was conducted. The virus present in Panax ginseng was confirmed by reverse transcription polymerase chain reaction (RT-PCR) assay using virus-specific primers. In RNA-Seq data analysis, the multiplication protein of four viral contigs including Aristotelia chilensis virus 1 (AcV1), Turnip mosaic virus (TuMV), Watermelon mosaic virus (WMV), and Tobamovirus multiplication protein were discovered. From our metatranscriptome analysis and RT-PCR assay, TuMV and WMV were detected, whereas the three viruses reported in China such as tomato yellow leaf curl China virus; panax notoginseng virus A; and panax virus Y were not found in this study. The distribution of domestic ginseng viruses seems different from that recorded in China. Overall, this is the first plant virome analysis of Panax ginseng in Korea.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions

  • Kim, Ki Hyun;Lee, Dahae;Lee, Hye Lim;Kim, Chang-Eop;Jung, Kiwon;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.

Animal lectins: potential receptors for ginseng polysaccharides

  • Loh, So Hee;Park, Jin-Yeon;Cho, Eun Hee;Nah, Seung-Yeol;Kang, Young-Sun
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Panax ginseng Meyer, belonging to the genus Panax of the family Araliaceae, is known for its human immune system-related effects, such as immune-boosting effects. Ginseng polysaccharides (GPs) are the responsible ingredient of ginseng in immunomodulation, and are classified as acidic and neutral GPs. Although GPs participate in various immune reactions including the stimulation of immune cells and production of cytokines, the precise function of GPs together with its potential receptor(s) and their signal transduction pathways have remained largely unknown. Animal lectins are carbohydrate-binding proteins that are highly specific for sugar moieties. Among many different biological functions in vivo, animal lectins especially play important roles in the immune system by recognizing carbohydrates that are found exclusively on pathogens or that are inaccessible on host cells. This review summarizes the immunological activities of GPs and the diverse roles of animal lectins in the immune system, suggesting the possibility of animal lectins as the potential receptor candidates of GPs and giving insights into the development of GPs as therapeutic biomaterials for many immunological diseases.

Pharmacological potential of ginseng and its major component ginsenosides

  • Ratan, Zubair Ahmed;Haidere, Mohammad Faisal;Hong, Yo Han;Park, Sang Hee;Lee, Jeong-Oog;Lee, Jongsung;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.199-210
    • /
    • 2021
  • Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.

Origin and evolution of Korean ginseng revealed by genome sequence

  • Cho, Woohyeon;Shim, Hyeonah;Yang, Tae-Jin
    • Journal of Ginseng Culture
    • /
    • v.3
    • /
    • pp.1-10
    • /
    • 2021
  • Panax ginseng (Ginseng or Korean ginseng) is one of the most important medicinal herbs in the world. We made a high-quality whole genome sequence of P. ginseng using 'Chunpoong' cultivar, which is the first cultivar registered in Korea Seed and Variety Service (KSVS) with relatively similar genotypes and superior phenotypes, representing approximately 3 Gbp and 60,000 genes. Genome sequence analyses of P. ginseng and related speciesrevealed the origin of Korean ginseng and the ecological adaptation of 18 Panax species around the world. Korean ginseng and American ginseng (P. quinquefolius) are tetraploid species having 24 chromosome pairs, while the other 16 species are diploid species with 12 chromosome pairs. Panax and Aralia are the closest genera belonging to the Araliaceae family that diverged approximately 8 million years ago (MYA). All Panax species evolved as shade plants adapting to cool climates and low light conditions under the canopy of deep forests from Southeast Asia such as Vietnam to Northeast Asia such as Russia approximately 6 MYA. However, through recurrent ice ages and global warming, most diploid Panax species disappeared due to the freezing winter, while tetraploid P. ginseng may have appeared by allotetraploidization, which contributed to the adaptation to cold temperaturesin Northeast Asian countries including the Korea peninsula approximately 2 MYA. American ginseng evolved by the adaptation of P. ginseng in Northeast America after the intercontinental migration 1 MYA. Meanwhile, most of diploid Panax species survived in high-altitude mountains over 1,600 meters in Southeast Asia because they could not endure the hot temperature and freezing cold. The genome sequence provides good basisto unveil the origin and evolution of ginseng and also supports practical gene chips which is useful for breeding and the ginseng industry.

Molecular Identification of Korean Mountain Ginseng Using an Amplification Refractory Mutation System (ARMS)

  • In, Jun-Gyo;Kim, Min-Kyeoung;Lee, Ok-Ran;Kim, Yu-Jin;Lee, Beom-Soo;Kim, Se-Young;Kwon, Woo-Seang;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • Expensive herbs such as ginseng are always a possible target for fraudulent labeling. New mountain ginseng strains have occasionally been found deep within mountain areas and commercially traded at exorbitant prices. However, until now, no scientific basis has existed to distinguish such ginseng from commonly cultivated ginseng species other than by virtue of being found within deep mountain areas. Polymerase chain reaction (PCR) analysis of the internal transcribed spacer has been shown to be an appropriate method for the identification of the most popular species (Panax ginseng) in the Panax ginseng genus. A single nucleotide polymorphism (SNP) has been identified between three newly found mountain ginseng (KGD4, KGD5, and KW1) and already established Panax species. Specific PCR primers were designed from this SNP site within the sequence data and used to detect the mountain ginseng strains via multiplex PCR. The established multiplex-PCR method for the simultaneous detection of newly found mountain ginseng strains, Korean ginseng, and foreign ginseng in a single reaction was determined to be effective. This study is the first report of scientific discrimination of "mountain ginsengs" and describes an effective method of identification for fraud prevention and for uncovering the possible presence of other, cheaper ginseng species on the market.

Till 2018: a survey of biomolecular sequences in genus Panax

  • Boopathi, Vinothini;Subramaniyam, Sathiyamoorthy;Mathiyalagan, Ramya;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.

Ancient herbal therapy: A brief history of Panax ginseng

  • Maria Assunta Potenza;Monica Montagnani;Luigi Santacroce;Ioannis Alexandros Charitos;Lucrezia Bottalico
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.359-365
    • /
    • 2023
  • Ginseng was the most revered of the herbs in ancient times in China, Korea, Japan, America. Ginseng was discovered over 5000 years ago in the mountains of Manchuria, China. References to ginseng are found in books dating back more than two millennia. It is revered by the Chinese people as it is considered a herb for everything use and therefore for a wide range of diseases (currently its Latin name derived from the Greek panacea, meanings, that is, for everything). So, it was used exclusively by the Chinese Emperor's, and they were willing to pay the price without problems. Increasing its fame, ginseng brought a flourishing international trade that allowed Korea to supply China with silk and medicines in exchange for wild ginseng and later along with what grows in America.