• Title/Summary/Keyword: Pan coefficients

Search Result 56, Processing Time 0.027 seconds

A Study to Determine the Consumptive Use of Water for Upland Crops (전작물의 필요수량 결정을 위한 연구)

  • 김철회;유시창;이근후;서원명
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.37-45
    • /
    • 1980
  • This study was carried out to investigate the consumptive use of water for red peppers and soy beans. The correlation between the soil moisture contents and the selected meteorological factors during the growing season was analyzed. Characteristics of the drought at Jinju, Yeosu, Gwangju, and Mokpo area were figured out in view of frequency analysis. The results obtained from this study could be used as a reasonable criteria for the estimation of the duty of water in the design of upland irrigation systems. Obtained results are summarized as follows: 1. Red peppers were grown at the three levels of soil moisture contents; 75 percent, 50 percent, and 25 percent, respectively. The red pepper grown at the 75 percent of soil moisture content showed the highest yield. The total evapotranspiration during the growing season from red peppers was 471. lmm, which was 86.6mm less than the pan evaporation. 2. The soy bean grown at 75 percent soil moisture content showed the highest yield, although there was no signicant difference in yields among treatments. The total evapotranspiration during the growing season from the soy bean was 342.8 mm, which was 119.2mm less than the pan evaporation. 3. Coefficients of consumptive use(k) and meteorological data are shown on Table-9. 4. The significant correlations between the evapotranspiration and the humidity and daily temperature range were observed. Results are shown on Table-11.. Evaporanspiration can be easily estimated from the humidity and daily temperature range by using the equation...... (1) Ept=4.808-0.041H+0.207T.......(1) where, Ept; evapotranspiration(mm/day) H ; humidity(%) T ; daily temperature range ($^{\circ}C$) 5. The variations of soil moisture content during the growing season at the soil depth of 5cm, 15cm, and 45cm are shown on Fig. 4~9. The results of the correlation analysis between the evapotranspiration from the crops and the soil moisture content are shown on Table-12. The evapotranspiration can be estimated from soil moisture content at the different depth of the soil by using the equation....... (2). Ept = 3.433 - 0. 364M1 +0. 359M$_2$- 0. 055M$_3$....... (2) where, Ept; evapotranspiration (mm/day) M1 soil moisture meter reading at 5cm depth M$_2$; " 15cm " M$_2$; " 40cm " 6. The estimated probab]e successive dry days in selected areas are shown on Table 13. Gumbel-Chow method was used to calculate the probable successive dry days. Further investigation are required to obtain the more detailed and reliable results.

  • PDF

Capillary Water Absorption Properties of Steel Fiber Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles

  • Qiu, Jisheng;Zheng, Juanjuan;Guan, Xiao;Pan, Du;Zhang, Chenghua
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.451-458
    • /
    • 2017
  • The service life of coal gangue concrete(CGC) strongly depends on the capillary water absorption, this water absorption is susceptible to freeze-thaw cycles. In this paper, the cumulative water absorption and sorptivity were obtained to study the effects of 0, 0.5, 1.0, and 1.5 % steel fiber volume fraction added on the water absorption of CGC. Sorptivity and freeze-thaw tests were conducted, and the capillary water absorption was evaluated by the rate of water absorption(sorptivity). Three prediction models for the initial sorptivity of steel fiber reinforced coal gangue concrete(SFRCGC) under freeze-thaw cycles were established to evaluate the capillary water absorption of SFRCGC. Results showed that, without freeze-thaw cycles, the water absorption of CGC decreased when steel fiber at 1.0 % volume fraction was added, however, the water absorption increased with the addition of 0.5 or 1.5 % steel fibers. Once the SFRCGC specimens were exposed to freeze-thaw cycles, the water absorption of SFRCGC significantly increased, and 1.0 % steel fiber in volume fraction added to CGC caused the lowest water absorption, except for the case of the sample without steel fibers added. The CGC with steel fiber at 1.0 % volume fraction performed better. The SFRCGC has a strong response to freeze-thaw cycles. Results also showed that the linear function prediction model is practical in the field of engineering because of its simple form and a relatively high precision. Although the polynomial prediction model presents the highest computation precision among the three models, the complicated form and too many coefficients make it impractical for engineering applications.

GEOMETRY OF SATELLITE IMAGES - CALIBRATION AND MATHEMATICAL MODELS

  • JACOBSEN KARSTEN
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.182-185
    • /
    • 2005
  • Satellite cameras are calibrated before launch in detail and in general, but it cannot be guaranteed that the geometry is not changing during launch and caused by thermal influence of the sun in the orbit. Modem satellite imaging systems are based on CCD-line sensors. Because of the required high sampling rate the length of used CCD-lines is limited. For reaching a sufficient swath width, some CCD-lines are combined to a longer virtual CCD-line. The images generated by the individual CCD-lines do overlap slightly and so they can be shifted in x- and y-direction in relation to a chosen reference image just based on tie points. For the alignment and difference in scale, control points are required. The resulting virtual image has only negligible errors in areas with very large difference in height caused by the difference in the location of the projection centers. Color images can be related to the joint panchromatic scenes just based on tie points. Pan-sharpened images may show only small color shifts in very mountainous areas and for moving objects. The direct sensor orientation has to be calibrated based on control points. Discrepancies in horizontal shift can only be separated from attitude discrepancies with a good three-dimensional control point distribution. For such a calibration a program based on geometric reconstruction of the sensor orientation is required. The approximations by 3D-affine transformation or direct linear transformation (DL n cannot be used. These methods do have also disadvantages for standard sensor orientation. The image orientation by geometric reconstruction can be improved by self calibration with additional parameters for the analysis and compensation of remaining systematic effects for example caused by a not linear CCD-line. The determined sensor geometry can be used for the generation? of rational polynomial coefficients, describing the sensor geometry by relations of polynomials of the ground coordinates X, Y and Z.

  • PDF

A Basic Study on Development of a Tracking Module for ARPA system for Use on High Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.83-87
    • /
    • 2016
  • The maritime industry is expanding at an alarming rate hence there is a perpetual need to improve situation awareness in the maritime environment using new and emerging technology. Tracking is one of the numerous ways of enhancing situation awareness by providing information that may be useful to the operator. The tracking module designed herein comprises determining existing states of high dynamic target warship, state prediction and state compensation due to random noise. This is achieved by first analyzing the process of tracking followed by design of a tracking algorithm that uses ${\alpha}-{\beta}-{\gamma}$ tracking filter under a random noise. The algorithm involves initializing the state parameters which include position, velocity, acceleration and the course. This is then followed by state prediction at each time interval. A weighted difference of the observed and predicted state values at the $n^{th}$ observation is added to the predicted state to obtain the smoothed (filtered) state. This estimation is subsequently employed to determine the predicted state in the next radar scan. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from a pre-determined value of the damping parameter, ${\xi}$. The smoothed, predicted and the observed positions are used to compute the twice distance root mean square (2drms) error as a measure of the ability of the tracking module to manage the noise to acceptable levels.

The estimation of the wall friction coefficient in tunnels by in-situ measurement (현장측정을 통한 터널 내 벽면마찰계수 추정 연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Lee, Ho-Hyung;Baek, Doo-San;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.405-421
    • /
    • 2018
  • In most of cases, the wall friction coefficients applied for local tunnel design are quoted directly from foreign data or local design guideline. In the previous studies, the wall friction coefficient was estimated using the velocity decay method. However, it is difficult to estimate the wall friction coefficient when the convergence wind velocity in the tunnel is negative (-) or if there is a change in the natural wind. Therefore, in this study, the wall friction coefficient is estimated by applying the dynamic simulation technique in addition to the conventional the velocity decay method. As a result of the analysis, the coefficient of wall friction in the tunnels for the total of 9 tunnels (18 tubes both directions) was 0.011~0.025, and the mean value was estimated to be 0.020. In addition, the wall friction coefficient obtained quantitatively through this study was compared with the current design criteria.

Hydraulic Characteristics of Arable Fields in Korea and Applicability of Pedotransfer Functions

  • Jung, Kangho;Sonn, Yeonkyu;Hur, Seungoh;Han, Kyunghwa;Cho, Heerae;Seo, Mijin;Jung, Munho;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.655-661
    • /
    • 2016
  • Relationships between saturated conductivity (Ks) and separate contents were evaluated from 44 soil series of arable lands: 18 for paddy fields and 26 for upland crop fields. Saturated hydraulic conductivities of A, B, and C horizons were determined with tension infiltrometer and Guelph permeameter in situ. Sand, silt, clay, and organic matter content of each horizon were analyzed. Based on correlation analysis, sand separate had a positive relationship with Ks for both paddy (r=0.27, p=0.017) and upland fields (r=0.24. p=0.030). Clay content had a negative relationship with Ks for paddy soils (r=-0.32, p=0.005) while significant correlation between them was not found for upland crop fields (r=-0.20, p=0.07). Organic matter content showed a positive relationship with Ks only for upland crop fields (r=0.33, p=0.002). Due to low correlation coefficients between separate contents and Ks, performance of pedotransfer functions was not enough to estimate Ks. It implies that hydraulic properties of arable lands were affected by other factors rather than particle characteristics. Platy structure and plow pan were suggested to limit Ks of paddy fields. Soil compaction and diversity of parent materials were proposed to influence Ks of upland crop fields. It suggests that genetic processes and artificial managements should be included in pedotransfer functions to estimate hydraulic properties appropriately.

Subject Region-Based Auto-Focusing Algorithm Using Noise Robust Focus Measure (잡음에 강인한 초점 값을 이용한 피사체 중심의 자동초점 알고리듬)

  • Jeon, Jae-Hwan;Yoon, In-Hye;Lee, Jin-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this paper we present subject region-based auto-focusing algorithm using noise robust focus measure. The proposed algorithm automatically estimates the main subject using entropy and solves the traditional problems with a subject position or high frequency component of background image. We also propose a new focus measure by analyzing the discrete cosine transform coefficients. Experimental results show that the proposed method is more robust to Gaussian and impulse noises than the traditional methods. The proposed algorithm can be applied to Pan-tilt-zoom (PTZ) cameras in the intelligent video surveillance system.

An Efficient VLSI Architecture for the Discrete Wavelet Transform (이산 웨이브렛 변환을 위한 효율적인 VLSI 구조)

  • Pan, Sung-Bum;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.96-103
    • /
    • 1999
  • This paper proposes efficient VLSI architecture for computation of the 1-D discrete wavelet transform (DWT). The proposed VLSI architecture computes the wavelet lowpass and highpass output sequences using the product term anhm, $n,m{\ge}0$, where an and hm denote the imput sequence and the wavelet lowpass filter coefficient, respectively. Whereas the conventional architectures compute the lowpass and highpass output sequences using the product terms anhm and angm, respectively, where gm denotes the wavelet highpass filter coefficient. The proposed architecture is applied to computation of the Daubechies 4-tap wavelet transform using the relationships between the Daubechies wavelet filter coefficients. Performance comparison of various architectures for computation of the 1-D DWT are presented. Note that the proposed architecture does not require extra processing units whereas the conventional architectures need them. Also it is modeled in very high speed integrated circuit hardware description language (VHDL) and simulated to show its functional validity.

  • PDF

Predicting the resting metabolic rate of young and middle-aged healthy Korean adults: A preliminary study

  • Park, Hun-Young;Jung, Won-Sang;Hwang, Hyejung;Kim, Sung-Woo;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.1
    • /
    • pp.9-13
    • /
    • 2020
  • [Purpose] This preliminary study aimed to develop a regression model to estimate the resting metabolic rate (RMR) of young and middle-aged Koreans using various easy-to-measure dependent variables. [Methods] The RMR and the dependent variables for its estimation (e.g. age, height, body mass index, fat-free mass; FFM, fat mass, % body fat, systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure, and resting heart rate) were measured in 53 young (male n = 18, female n = 16) and middle-aged (male n = 5, female n = 14) healthy adults. Statistical analysis was performed to develop an RMR estimation regression model using the stepwise regression method. [Results] We confirmed that FFM and age were important variables in both the regression models based on the regression coefficients. Mean explanatory power of RMR1 regression models estimated only by FFM was 66.7% (R2) and 66.0% (adjusted R2), while mean standard errors of estimates (SEE) was 219.85 kcal/day. Additionally, mean explanatory power of RMR2 regression models developed by FFM and age were 70.0% (R2) and 68.8% (adjusted R2), while the mean SEE was 210.64 kcal/day. There was no significant difference between the measured RMR by the canopy method using a metabolic gas analyzer and the predicted RMR by RMR1 and RMR2 equations. [Conclusion] This preliminary study developed a regression model to estimate the RMR of young and middle-age healthy Koreans. The regression model was as follows: RMR1 = 24.383 × FFM + 634.310, RMR2 = 23.691 × FFM - 5.745 × age + 852.341.

Standardized Treatment and Shortened Depression Course can Reduce Cognitive Impairment in Adolescents With Depression

  • Penghui Cao;Junjie Tan;Xuezhen Liao;Jinwei Wang;Lihuan Chen;Ziyan Fang;Nannan Pan
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.35 no.1
    • /
    • pp.90-97
    • /
    • 2024
  • Objectives: This study aimed to explore the influence of depression severity, disease course, treatment status, and other factors on cognitive function in adolescents with depressive disorders. Methods: Participants who met the inclusion criteria were enrolled in the study. Sociodemographic data of each participant were recorded, including age, sex, and family history of mental disorders. Zung's Self-Rating Depression Scale was used to assess depression status in adolescents. Moreover, P300 and mismatch negativity (MMN) were used to objectively evaluate the participants' cognitive function. Results: Only 26.8% of the adolescents with depression received standard antidepressant treatment. The latencies of N2 (267.80±23.34 ms), P3 (357.71±32.09 ms), and MMN (212.10±15.61 ms) in the adolescent depression group were longer than those in the healthy control group (p<0.01). Further analysis revealed that the latency of MMN was extended with increased levels of depression in adolescents. The MMN latency was short in participants with depression receiving standardized treatment. Furthermore, the latency of MMN was positively correlated with the severity and duration of depression (correlation coefficients were 0.465 and 0.479, respectively) (p<0.01). Conclusion: Receiving standardized treatment and shortening the course of depression can reduce cognitive impairment in adolescents with depression.