• Title/Summary/Keyword: Pad printing

Search Result 38, Processing Time 0.027 seconds

Pad Printed PEMS Device Printed on a Curved Surface (패드 인쇄 기법을 이용하여 곡면상에 구현된 PEMS 디바이스)

  • Lee, Taik-Min;Choi, Hyun-Cheol;Noh, Jae-Ho;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1087-1090
    • /
    • 2008
  • This paper presents the electro-luminescence (EL) display lamp which is patterned on a curved surface by the pad printing method. The printing methods, including the gravure, screen, flexo, inkjet, and pad printing, have an advantage of one-step direct patterning. However, in general, the printing and semi-conductor process, except pad printing method, cannot be applied for patterning on a curved surface. Thus, in this paper, we used pad printing method for patterning an EL display lamp on a curved surface. The EL display lamp consists of 5 layers: Bottom electrode; Dielectric layer; Phosphor; Transparent electrode; Bus electrode. Finally, we printed EL display lamp on a dish, which has a radius of curvature 80mm. The EL display lamp was driven at AC 200V of 1kHz.

  • PDF

Maskless Screen Printing Process using Solder Bump Maker (SBM) for Low-cost, Fine-pitch Solder-on-Pad (SoP) Technology

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.65-68
    • /
    • 2013
  • A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process. A selective solder bumping mechanism without the mask is based on the material design of SBM. Maskless screen printing process can implement easily a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology. Its another advantage is ternary or quaternary lead-free SoP can be formed easily. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 ${\mu}m$ is, successfully, formed.

Evaluation of Pants Embedded with Motion Adaptable 3D Printing Fall Impact Protective Pads (동작 가변적 3D 프린팅 낙상보호패드가 통합된 팬츠의 평가)

  • Lee, Jinsuk;Park, Junghyun;Lee, Jeongran
    • Journal of Fashion Business
    • /
    • v.26 no.2
    • /
    • pp.143-155
    • /
    • 2022
  • The purpose of this study was to develop protective clothing that could alleviate fall impacts. Fall impact protection pants for elderly women were designed, and motion adaptable hip pads and knee pads printed by 3D printing were integrated into the pants and evaluated. First, the design of the fall impact protection pants with variable motion was semi-loose fitting pants that could be worn and detached from the protective pad. A pad pocket was made in the lining inside the pants so that the protective pad could be fixed to the protective area. Second, in the evaluation of the appearance of the fall impact protection pants, the wearer group had a good score of 4.60 or higher for all questions on color, material, ease, and fit. In the evaluation of the insertion method of the protective pad, the flexibility of the pad, and the weight of the pad, the subjects' scores were 4.30~4.80. The fit of the fall impact protection pants was excellent in the texture and elasticity of the outside and inside of the pants. There was no discomfort due to the pad(4.60), and no difficulty in movement during wearing activities was reported. During squatting, it was evaluated as 4.80, indicating that the motion adaptable hip joint and knee pads were highly effective during operation.

Structure Design of Fall Impact Protection Pad Using 3D Printing Technology and Comparison of Characteristics According to Filament Material (3D 프린팅 기술을 활용한 낙상충격 보호패드 구조설계 및 필라멘트 소재에 따른 특성 비교)

  • Park, Jung Hyun;Jung, Hee-Kyeong;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.5
    • /
    • pp.939-949
    • /
    • 2017
  • This study uses 3D printing technology to design and fabricate a fall impact protection pad with a spacer fabric structure. The design of the pads consists of hexagonal three-dimensional units connected in a honey-comb shape; in addition, the unit consists of a surface layer and a spacer layer. Protect pads were designed as either a hexagonal type or diamond type according to the surface layer structure; subsequently, a spacer filament was also designed as the most basic I-shape type. Designed pads were printed using four types of flexible filaments to select suitable material for a fall impact protection pad. Impact protection performance and bending stiffness were evaluated for the eight type of pad outputs. As a result of the impact protection performance evaluation, when the force of 6,500N was applied, the force passed through the pad was in the range of 1,370-2,132N. FlexSolid$^{(R)}$ and Skinflex$^{TM}$ showed good protection performance and cubicon flexible filament showed the lowest protection. NinjaFlex$^{(R)}$ was found to be the most flexible in the bending stiffness evaluation.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

Inkjet-Printed Capacitive Touch Paper (잉크젯 프린팅 기술을 이용한 캐패스티브 터치 페이퍼)

  • Yun, Taehwa;Lee, Sak;Lim, Sungjoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.799-805
    • /
    • 2015
  • In this paper, an inkjet-printed capacitive touch pad is proposed. This touch pad detects contacts of human finger by detecting changes in effective capacitance due to electrical impedance of human finger. A flexible, low-cost and disposable paper is used as a substrate. Inkjet printing technology makes the fabrication fast, simple and environmentally friendly. Measured capacitances of the touched and untouched states are in the range of 163 to 182pF and 218 to 272pF, respectively. The differences in the measured capacitance of each state are sufficiently large to recognize that a finger has made contact with touch pad.

Study of Liquid Transfer Process for micro-Gravure-Offset Printing (마이크로 그라비아 옵셋 프린팅에서의 유체 전이 공정에 관한 연구)

  • Kang, Hyun-Wook;Huang, Wei-Xi;Sung, Hyung-Jin;Lee, Taik-Min;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1098-1102
    • /
    • 2008
  • To increase the ink transfer rate in the micro-gravure-offset printing, the liquid transfer process between two separating plates is investigated. During the liquid transfer process, in which one plate is fixed and the other one moves vertically, a sessile droplet is separated into two droplets. The volume ratio of the two droplets depends on the contact angles of the two plates. In a numerical study of the ink transfer processes, liquid transfer between two parallel separating plates and between a trapezoidal cavity and an upward moving plate are simulated, as models of the printing of ink from the offset pad onto the substrate and the picking up of ink from the gravure plate by the offset pad, respectively. Also, in experimental study, to obtain various surface contact angles, chemical treatment, plasma treatment, and electrowetting- on-dielectric (EWOD) surface are considered. The transfer rate between two plates is calculated by analyzing the droplet images. From the results, the optimal surface contact angles of the units of the micro-gravure-offset printing can be characterized.

  • PDF

Design and Evaluation of a Knee Protector using a 3D Printing Pad (3D 프린팅 패드를 활용한 무릎 보호대의 설계 및 평가)

  • Xi Yu Li;Jung Hyun Park;Jeong Ran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.221-229
    • /
    • 2023
  • This study aims to develop knee protectors that provide high safety and fitness, while incorporating a motion-adaptable 3D-printed pad. These protectors were evaluated by individuals who experience knee discomfort or pain. The results are as follows. First, the 3Dprinted pad design of a hexagonal mesh structure, which is modeled for excellent appearance and knee movement. Each unit of the mesh has a outer layer of 2mm thick, a spacer layer of 1 mm in diameter, and is connected by a 1.5 mm bridge. The bridge was extended up to 1.2 cm. Second, the knee brace was designed in three types - cylinder, strap, and combination by Universal design. Impact protection measurements of the three knee protectors demonstrated roughly 80% reduction in impact. Third, based on usability evaluation, cylinder type protectors have the highest ratings in most areas, primarily because of their ease of use. The strap type protector received positive reviews in terms of appearance and care, and the combination type provided stable knee protection. This study demonstrated the potential industrial application of 3D printing technology by designing and evaluating protective products for the human body. The results of this study are expected to aid knee protector manufacturers in developing practical products and promoting the development of protective equipment for other body parts or purposes.

An Adaptive and Robust Inspection Algorithm of PCB Patterns Based on Movable Segments (동적 세그먼트 기반 PCB 패턴의 적응 검사 알고리즘)

  • Moon Soon-Hwan;Kim Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.102-109
    • /
    • 2006
  • Several methods for PCB pattern inspection have been tried to detect fine detects in pad contours, but their low detection accuracy results from pattern variations originating from etching, printing and handling processes. The adaptive inspection algorithm has been newly proposed to extract minute defects based on movable segments. With gerber master images of PCB, vertex extractions of a pad boundary are made and then a lot of segments are constructed in master data. The pad boundary is composed of segment units. The proposed method moves these segments to optimal directions of a pad boundary and so adaptively matches segments to pad contours of inspected images, irrespectively of various pattern variations. It makes a fast, accurate and reliable inspection of PCB patterns. Its performances are also evaluated with several images.