• Title/Summary/Keyword: Packing system

Search Result 365, Processing Time 0.028 seconds

Computer Program Development for D$_2$O Upgrader Performance Management (중수승급기 성능관리 프로그램 개발)

  • Ahn, Do-Hee;Kim, Kwang-Rag;Chung, Hong-Suck;Kim, Yong-Eak;Jeong, Ill-Seok;Hon, Sung-Yull;Ko, Jae-Wook
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 1990
  • Heavy water is used as a moderator and a coolant in the pressurized heavy water reactor Because of the high cost of heavy water, downgraded heavy water generated in the reactor system is recycled to the reactor after being concentrated up to 99.8% or more in heavy water upgraders. This study investigates the process of upgraders and then suggests a theoretical model. The relations between process variables are derived from tower packing characteristics, vapour-liquid equilibria, and mass-heat balance equations at a steady state operation of the upgrader h computer program UPGR is developed, using the algorithm that solves the nonlinear equations step by step. It shows that the results of computer simulation are in good agreement with the operating data of the Wolsung upgrader. Thus, this computer code offers the optimum operating guide and is now applied to manage the performance of upgraders for the effective operation of the heavy water upgraders.

  • PDF

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha;Hajra, Sugato;Choudhary, Ram Naresh Prasad
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.469-476
    • /
    • 2019
  • A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

Unplanned Reoperation Rate at a Government-Designated Regional Trauma Center in Gangwon Province

  • Kim, Minju;Kim, Seongyup
    • Journal of Trauma and Injury
    • /
    • v.34 no.1
    • /
    • pp.39-43
    • /
    • 2021
  • Purpose: Determining appropriate ways to assess health care quality within the National Health Insurance System is of interest to both the Korean government and the medical community. However, in the trauma field, the number of indicators used to evaluate surgical quality is limited. Using data collected over 5 years at Wonju Severance Christian Hospital Trauma Center in Korea, this study aimed to determine whether the unplanned reoperation rate in the field of trauma surgery could be used to assess the quality of an institution's surgical care. Methods: In total, 665 general surgical procedures were performed at the Trauma Center in 453 patients with abdominopelvic injuries from January 2015 to December 2019. Data were collected from the Trauma Center's data registry and medical records, and included information regarding patients' demographic characteristics, the type of index operation, and the reason for unplanned reoperations. Results: A total of 453 index operations were evaluated. The proportion of patients with an Injury Severity Score (ISS) >15 was 48-70% over the 5-year period, with an unplanned reoperation rate of 2.1-9.3%. Patients had an average ISS score of 17.5, while the average Abbreviated Injury Scale Score was 2.87. Unplanned reoperations were required in about 7% of patients. The most common complications requiring reoperation were recurrent bleeding (26.9%), wound problems (26.9%), intestinal infarction (15.4%), and anastomosis site leakage (7.7%). The procedures most frequently requiring unplanned reoperations were bowel surgery (segmental resection, primary repair, enterostomy, etc.) (24.5%) and preperitoneal pelvic packing (10.6%). Conclusions: The proportion of reoperations was confirmed to be affected by injury severity.

Delayed Sternal Closure Using a Vacuum-Assisted Closure System in Adult Cardiac Surgery

  • Hyun Ah Lim;Jinwon Shin;Min Seop Jo;Yong Jin Chang;Deog Gon Cho;Hyung Tae Sim
    • Journal of Chest Surgery
    • /
    • v.56 no.3
    • /
    • pp.206-212
    • /
    • 2023
  • Background: Delayed sternal closure (DSC) is a useful option for patients with intractable bleeding and hemodynamic instability due to prolonged cardiopulmonary bypass and a preoperative bleeding tendency. Vacuum-assisted closure (VAC) has been widely used for sternal wound problems, but only rarely for DSC, and its efficacy for mediastinal drainage immediately after cardiac surgery has not been well established. Therefore, we evaluated the usefulness of DSC using VAC in adult cardiac surgery. Methods: We analyzed 33 patients who underwent DSC using VAC from January 2017 to July 2022. After packing sterile gauze around the heart surface and great vessels, VAC was applied directly without sternal self-retaining retractors and mediastinal drain tubes. Results: Twenty-one patients (63.6%) underwent emergency surgery for conditions including type A acute aortic dissection (n=13), and 8 patients (24.2%) received postoperative extracorporeal membrane oxygenation support. Intractable bleeding (n=25) was the most common reason for an open sternum. The median duration of open sternum was 2 days (interquartile range [25th-75th pertentiles], 2-3.25 days) and 9 patients underwent VAC application more than once. The overall in-hospital mortality rate was 27.3%. Superficial wound problems occurred in 10 patients (30.3%), and there were no deep sternal wound infections. Conclusion: For patients with an open sternum, VAC alone, which is effective for mediastinal drainage and cardiac decompression, had an acceptable superficial wound infection rate and no deep sternal wound infections. In adult cardiac surgery, DSC using VAC may be useful in patients with intractable bleeding or unstable hemodynamics with myocardial edema.

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

Mechanism and Spray Characteristics of a Mini-Sprinkler with Downward Spray for Prevention of Drop Water (하향 분사식 미니스프링클러의 낙수방지 메카니즘과 살수 특성)

  • Kim, Hong-Gyoo;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • A study was conducted to find mechanism and spray characteristics of a mini-sprinkler with downward spray to develop a new design type to be able to prevent drop water. The experiments were executed in a plastic greenhouse to minimize the effect of the wind. Data was collected at five different operation pressures and at 4 different raiser heights. Spray characteristics of the sprinkler such as effective radius, effective area, mean application depth, absolute maximum application depth, effective maximum application depth and coefficient of variation were determined. In order to analyze the mechanism and packing supporter of sprinkler, the numerical simulation using ABAQUS was performed. The optimum pressure for preventing drop water was determined.

Effect of Temperature and Gas Permeability of Functional Packing Films on Storability of Fresh-cut Salicornia herbacea Classified by Size (저장온도와 기능성 필름의 기체 투과도가 다양한 크기의 퉁퉁마디 신선편이의 저장성에 미치는 영향)

  • Baek, Jun Pill;Lee, Han Jong;Choi, In-Lee;Jung, Hyun Jin;Son, Jin Sung;Kim, Il Seop;Jeong, Cheon Soon;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 2013
  • These studies were identified the effect of four types of non-perforated breathable (NPB) packing film and three sizes on storage ability of fresh-cut for ready to eat packaging at $5^{\circ}C$ for 25 days and $10^{\circ}C$ for 15 days storage in Salicornia herbacea. The fresh weight loss was less than 2% in every films at $5^{\circ}C$ condition after 25 days storage, and the $10^{\circ}C$ also had same result on 15 days storage except 100,000 cc NPB film. Compare with storage after 15 days, storage condition at $5^{\circ}C$ had shown better result under the 1% fresh weight loss rate. The 5,000 cc and $5^{\circ}C$ condition had been shown the characteristics of MA packaging in carbon dioxide and oxygen concentrations. The ethylene concentration in vacuum film was higher 10 to 100 times than in NPB film treatments during storage. But ethylene concentration was not statistically significant differences among size treatments. Every conditions had been measured the anti-oxidant activity by DPPH method after storage at $5^{\circ}C$ for 25 days and $10^{\circ}C$ for 15 days. S. herbacea at $5^{\circ}C$ had been more than twice of activity compare with that at $10^{\circ}C$. 100,000 cc NPB film had been higher contents of anti-oxidant activity at $5^{\circ}C$ and $10^{\circ}C$. As the fresh-cut sizes, 3 cm and 5 cm sizes had changed depending on film types but 10 cm were not effected by the film types in the DPPH activity. When panel test had been tried to measure the visual quality and off-flavor after storage, $5^{\circ}C$ with a filme of 5,000 cc treatment had established higher value than other treated conditions. As these results, it's may be suggested that the $5^{\circ}C$ with 5,000 cc non-perforated breathable film for MA storage in Salicornia herbacea at fresh cut distribution system. Fresh cut size 10 cm with 100,000 cc NPB film also had the good quality for 15 dyas storage at $10^{\circ}C$, and this result can be applied for short term distribution system in Korea.

Evaluation of the HACCP System on Microbiological Hazard during Dressing Production (드레싱 제조업체의 HACCP 시스템 적용을 위한 미생물학적 위해도 평가)

  • Kwon, Sang-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.457-463
    • /
    • 2013
  • The purpose of this study was to apply the Hazard Analysis Critical Control Point (HACCP) system to the production of dressing. The hazard analysis examined the main materials, industrial water, microbial evaluation, and airborne microorganisms of each working area, as well as the pathogenic microbial contamination risk. The survey was conducted at SJ Company in Jincheon (Chungchengbuk-do), Korea for 30 days from April 1, 2012 to April 30, 2012. The results showed that raw material microorganisms had a total plate count in industrial water below $3.00{\times}10$ CFU/mL in working room I, working room II, the packing room, washing water, and the inspection room for five times in each place. During dressing production (including heat treatment and mixing), general bacteria were detected at an average of $3{\times}10$ CFU/mL, but yeast, mold, and pathogenic bacteria were not detected. Airborne microbiological evaluation (for total plate count, yeast, and mold) found levels below the legal limit at each working area. While workers were positive for microbes in total plate counts, coliform and Staphylococcus aureus were not detected. In conclusion, standards for hygienic management should be established to prevent and decrease hazards, such as general bacteria and pathogenic microorganisms (for example, E. coli, B. cereus, Listeria spp, Salmonella spp, Staph. aureus, Clostridium perfringens, yeast, and mold), and to found critical limits for microorganisms with an HACCP system.

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF