• Title/Summary/Keyword: Packing Effect

Search Result 380, Processing Time 0.042 seconds

Effect of Different Growing Stages of Winter Cereal Crops on the Quality of Silage Materials and Silages (맥류의 수확시기가 사일리지의 재료적 특성 및 품질에 미치는 영향)

  • Heo, J.M.;Lee, S.K.;Lee, I.D.;Lee, B.D.;Bae, H.C.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.877-890
    • /
    • 2005
  • This study was carried out to determine the effect of different growing stages of winter cereal crops on the quality of silage materials and silages. Silages were made from the silage materials harvested at four growing stages(boot, heading, flowering, and yellow ripe) of barley, rye, oat, and wheat. Approximately 1 kg of silage materials harvested from each growing stage stored in vinyl bags with vacuum packing method and fermented at room temperature for 40 days. As the growing stages progressed, the moisture and crude protein contents of the silage materials decreased, and fiber contents(NDF, ADF and hemicellulose) increased. All the silage materials showed significantly higher contents of water soluble carbohydrate in the boot stages than in the flowering and yellow ripe stages. There was no tendency in acetic acid contents of silage materials cut at different growing stages. The overall pH of silage materials were in the range of 5.91-6.01, and there was no significant difference among growing stages. Buffering capacity of silage materials were in the range of 26.23-29.47meq/100g DM, and showed a tendency to decline as the growing stages proceeded. The moisture and crude protein contents of silages decreased significantly in all species as the growing stages proceeded, and the fiber contents vice versa. As the growing stages proceeded, the pH of the silages tended to increase, and the acetic, butyric, and lactic acid contents tended to decrease. The buffering capacity of silages had a tendency to decrease as the growing stages of winter cereal crops proceeded. Therefore, these features described above should be taken into consideration in order to make silages from winter crops economically.

The Effects of Ethylene Absorbent on the Quality of 'Fuyu' Persimmon Fruits in MA Package (MA 포장내 에틸렌 흡착 처리가 단감 '부유'의 선도유지에 미치는 영향)

  • Ahn, Gwang-Hwan;Ha, Yeong-Le;Shon, Gil-Man;Song, Won-Doo;Seo, Kwang-Ki;Choi, Seong-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1278-1284
    • /
    • 2000
  • The study was performed to elucidate the effects of ethylene-absorbent on the quality of 'Fuyu' persimmon fruits in the MA package. Five persimmons were packed in a MA package film (low density polyethylene, 0.055 mm film thickness), and stored at $-0.5^{\circ}C$ for 60 days. Two persimmons were repacked in a MA package with or without ethylene absorbent $(1\;M\;KMnO_4+zeolite)$ and stored at $-0.5^{\circ}C$. Ten days later, these packages was moved to $2^{\circ}C$ or $25^{\circ}C$ storage room to examine the effect of the ethylene-absorbent on the quality of the fruits. Ethylene removal by enclosed ethylene absorbent in MA packaging reduced the rate of fruit respiration at $25^{\circ}C$, so that $O_2$ and $CO_2$ concentration in packing were maintained higher and lower, respectively, compared to control. These effects were not observed, however, in $2^{\circ}C$ post-storage. Fruit firmness and sugar composition were also influenced by ethylene absorbent, showing more delayed flesh softening and higher sucrose concentration in ethylene absorbent treated fruits than control. But ethylene-absorbent treatment lowered glucose and fructose concentration. That shows that ethylene could influence on sugar composition by inhibiting sucrose inversion to glucose and fructose. The production of ethanol and acetaldehyde was reduced by ethylene removal, but the effect was not so high as other quality indices.

  • PDF

The Effect of Renewal Topworking on Early Y Shape Tree Formation and Yields in Peach Trees (고접갱신이 복숭아 Y자 수형 조기 구성 및 생산성에 미치는 영향)

  • Yoon, Ik Koo;Yun, Seok Kyu;Jun, Ji Hae;Nam, Eun Young;Kwon, Jung Hyun;Bae, Hae Jin;Chung, Kyeong Ho;Moon, Byung Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of the early tree shapes with renewal by top-working on Y-shaped peach tree, and the influence on the maintaining fruit quantity with gradual renewal of interstock cultivar were determined. In the comparison of the places of top-working tree, top working tree on the inside of the main branch of interstock cultivar had higher graft union rate and branch growth than those of top working tree on the outside. Tree width, basal diameter of shoot, and number of bearing shoots were smaller in top working tree than in replanted tree. Although labor time was not different to control top working tree and replanted tree, labor time was much required to manage top working tree with interstock cultivar. Accumulated fruit production was 2,384 kg/10a in top working tree and 2,025 kg/10a in replanted tree for three years. However, top working tree had no loss of fruits because interstock cultivar of top-working tree had 3,727 kg/10a of fruits. No variation on fruit quality was observed between top working tree and replanting tree. In terms of economic value of top-working tree, labor to manage interstock cultivar, fertilizer price, fruit bagging, and grading and packing price increased. However, fruit production increased, and price of seedling, rental equipment, pulling-out trees, and repairing supporting system decreased. Therefore, gradual renewal of topworking tree has effects on the maintaining fruit quantity, supplementation on fruit loss, and renewal cultivar.

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane (메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향)

  • Song, Jun-Baek;Im, Hangjoon;Kim, Young-Ju;Jung, Youn-Woong;Ryu, Hee-Beom;Lee, Ju-Ho
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.

Effect of Acrylic Acid on the Physical Properties of UV-cured Coating Films for Metal Coating (금속코팅용 광경화 코팅필름의 물성에 대한 아크릴산(Acrylic acid)의 영향)

  • Seo, Jong-Chul;Choi, Jun-Suk;Jang, Eui-Sung;Seo, Kwang-Won;Han, Hak-Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • Five different composition UV-cured poly(urethane acrylate-co-acrylic acid) (PU-co-AA) films have been prepared by reacting isophorone diisocyanate(IPDI), polycaprolactone triol(PCLT), 2-hydroxyethyl acrylate(HEA), and different weight ratio trimethylolpropane triacrylate(TMPTA) and acrylic acid(AA) as diluents, and characterized using a Fourier transform infrared spectroscopy(FT-IR). The adhesion properties onto the stainless steel, morphology, mechanical hardness, and electrical property of UV-cured PU-co-AA films were investigated as a function of acrylic acid(AA) content. All the PU-co-AA films are structure-less and the molecular ordering and packing density decreased with increasing content of AA due to the flexible structure and -COOH side chains in AA. The crosscut test showed that PU-co-AA films without AA and with low content of AA showed 0% adhesion(0B) and the adhesion of PU-co-AA films in the range of 40-50% AA increased dramatically as the content of AA increases. The pull-off measurements showed that the adhesion force of PU-co-AA films to stainless steel substrate varied from 6 to 31 kgf /$cm^2$ and increased linearly with increasing AA content. The mechanical hardness also decreased as the content of AA increases. This may come from relatively linear and flexible structure in AA and low crystallinity in PU-co-AA films with higher content of AA. The higher AA-containing PU-co-AA films showed higher dielectric constant due to the increase of polarization by introducing AA monomer. In conclusion, the physical properties of UV-cured PU-co-AA films are strongly dependent upon the content of AA and the incorporation of AA in polyurethane acrylate is very useful way to increase the adhesion strength of UV-curable polymers on the stainless steel substrate.

Changes of Qualities of Green Asparagus Packed with Different Types during Low Temperature Storage (포장 방법에 따른 아스파라거스의 저온저장 중 품질변화)

  • Wang, Lixia;Choi, In-Lee;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.239-244
    • /
    • 2020
  • Effect of 6kg large unit with the carton box (20% open ratio) and MA box (10,000cc·m-2·day-1·atm-1 oxygen transmission rates modified atmosphere package), and the 100g small unit with MA film on asparagus sensory quality were evaluated. The CO2 concentration depended largely on the packing unit and maintained at around 3% in small MA packages, whereas in the MA box increased to 12%. Ethylene concentration rapidly increased until after 3 days of storage in MA packages and then decreased to maintain 5μL·L-1. Unrelated to the unit size, the lower weight loss was obtained in MA packages. A significant difference in visual quality was shown since the 15th day, the best and worst were the MA box and small MA package on the finish day. Off-odor was the highest in small MA packages and the lowest in the carton box (< 3.0). Although there was no significant difference in firmness among all treatments, the packages showed the highest firmness in tips and stems, respectively. The sugar content and hue angle decreased during storage, but there was no statistical difference in all treatments. EL was lowest and highest in small MA package and carton box, respectively. On the 10th day, the total aerobic bacteria was lowest in small MA packages, but no significant difference on the 20th day. E. coli was not found in all treatments on the 10th day, while it was the lowest in the MA box on the 20th day. The mold and yeast were not observed during the whole storage. Based on the above results, the carton box packaged with 10,000cc OTR film was more effective in maintaining the quality of green asparagus with the suitable CO2 concentration for asparagus cold storage.

Freshness Comparison of Lettuce (Lactuca sativa L.) in accordance with Storage and Packaging Method on High-temperature Period (결구상추 고온기 포장 및 저장방법에 따른 신선도 비교)

  • Bark, Doe-Ey;Yoon, Yi-Na;Woo, Ye Jinn;Cheung, Gum Hang;Hwang, Sae Bom;Park, SuHyoung;Woo, Young-June;Shin, Chul;Choi, Dong-soo;Lim, Junhyung;Park, See Eun;Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Effect of packaging and storage methods for enhancing the shelf life and improving the postharvest quality of lettuce (Lactuca sativa L.) was studied during high temperature period. Lettuces were packed using four packaging and storage types: (A) plastic box container (control); (B) plastic box container covered with high density polyethylene (HDPE) film; (C) plastic box container with lettuce wrapped in linear low-density polyethylene (LLD-PE) film; and (D) plastic box container with lettuce with its stem. The quality parameters, such as fresh weight loss, SPAD value, and appearance of lettuce were investigated. The lettuce wrapped with LLD-PE film inside the plastic box container showed the lowest weight loss, highest SPAD value and best appearance compared to those exposed to the other packaging and storage methods during the three-week storage at $2^{\circ}C$. The results indicate that the marketability of lettuce can be optimized if proper packaging and storing is adopted. Prolonging the freshness even on low temperature storage will increase the potential of its sale ability in the domestic market even during summer season.

  • PDF

Quality Changes of Fresh-Cut Leafy and Condiment Vegetables during Refrigerated Storage (신선편이 엽채류 및 조미채소류의 냉장저장 중 품질변화)

  • Kim, Su-Jin;Sun, Shih-Hui;Kim, Gi-Chang;Kim, Haeng-Ran;Yoon, Ki-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1141-1149
    • /
    • 2011
  • The objective of this study was to analyze quality changes during storage of fresh-cut produce (leafy vegetables and condiment vegetables) as a function of packaging and storage temperature. Fresh-cut produce was washed using a three step cleaning process and was packed in vacuum packaging (green onion, hot pepper, onion, baechu) and perforated film packaging (buchu and perilla leaf). The effects of packaging method and storage temperature on quality of fresh-cut produce were determined by analyzing total plate counts, E. coli, coliform groups, moisture content, pH, Aw, surface color, and exterior quality during storage at 4 and 10$^{\circ}C$. According to the results, surface color change and microbial growth were delayed during storage at 4$^{\circ}C$. Additionally, E. coli was not detected during storage. Generally, moisture content decreased in the perforated film packaging. Changes in surface quality such as skin browning, softening of tissue and chlorosis at 4$^{\circ}C$ were inhibited, whereas rapid vacuum annealing and changes in color and flavor were observed in the sample stored at 10$^{\circ}C$. The result indicated that overall quality of the fresh-cut produce at 4$^{\circ}C$ was well maintained. The perforation in packing materials did not significantly increase the number of microorganisms on buchu and perilla leaf. The proper packaging methods and temperature may beneficial effect on microbial safety, quality and thus result in longer shelf-life fresh-cut vegetables during distribution.

The Effect of Packing Method of Relining Material on the Flexural Strength of Denture Base Resin (첨상용 레진의 성형법이 의치상의 굴곡강도에 미치는 영향)

  • Kim, Min-Chul;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.197-207
    • /
    • 2011
  • The study aimed at examining how different reline resins affect flexural strength and flexural modulus of denture base. A total of 80 specimens ($64{\times}10{\times}3.3$ mm, according to ISO 1567:1999) of heat-polymerized resin, 40 specimens for (Lucitone199(Dentsply Int., NewYork, USA), SR Ivocap(Ivoclar AG, Schaan, Liechtenstein)) respectively, were polymerized according to the manufacturer's instructions and divided into eight groups(n = 10). Control group specimens remained intact. Specimens in the other groups were abraded on both sides to 2 mm thickness, and were relined in 1.3 mm thickness with 3 types of resins (Lucitone199(Dentsply), SR Ivocap(Ivoclar), and Rebase II(Tokuyama Co., Ltd, Tokyo, Japan)). All specimens were preserved in distilled water at $37^{\circ}C$ for 50 hours, and then were subjected to flexural strength testing in a universal testing machine using 3-point loading. A crosshead speed of 5 mm/min was used, and the distance between the supports was 50 mm. Data analyses included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (p=.05). Both heat-polymerized resin groups and auto-polymerized resin groups showed statistically low flexural strength and flexural modulus than control groups. Specimens relined with Lucitone 199 showed significantly higher flexural strength and flexural modulus than those relined with SR-Ivocap. Specimens relined with auto-polymerized resin showed significantly lower flexural strength and flexural modulus than those relined with heat-polymerized resin. Relining with heat-polymerized resins showed superior mechanical properties to relining with an auto-polymerized resin. Relining with the same heat-polymerized resin as the denture base does not affect mechanical properties of a denture. Lucitone199 using a compression-mould technique resulted in the highest flexural strength.

Effect of Pre-Fermentation Condition on Quality Characteristics of Small Packaged Cabbage Kimchi (소포장 양배추김치의 품질특성에 미치는 전 발효조건의 영향)

  • Kim, Yoo-Won;Han, Seo-Young;Choi, Hye-Sun;Han, Gwi-Jung;Park, Hye-Young
    • Korean journal of food and cookery science
    • /
    • v.28 no.4
    • /
    • pp.391-397
    • /
    • 2012
  • This study was carried out to investigate commercialization of Kimchi made of cabbage (Brassica oleracea var. capitata L.) using pre-fermentation conditions. The pre-fermentation conditions were 0, 18, 24, and 28 h at $20^{\circ}C$, and then the samples were stored at $10^{\circ}C$ to assess changes in quality characteristics. A comparison of the quality characteristics during storage showed that PF24 (pre-fermented cabbage Kimchi during 24 h at $20^{\circ}C$) and PF28 (pre-fermented cabbage Kimchi during 28 h at $20^{\circ}C$) had pH 4.47 and pH 4.23 on the second day of storage, respectively. It was possible to shorten the fermentation time to less than that of PF0 (not pre-fermented cabbage Kimchi at $20^{\circ}C$), by approximately 3 days. Total acidity was 0.26 to 0.29% immediately after making the Kimchi. However, PF0, PF18 (pre-fermented cabbage Kimchi during 18 h at $20^{\circ}C$), PF24 and PF28 became well-fermented when they were stored for 8~14 days, 3~10 days or 2~3 days. The number of lactic acid bacteria increased with the passage of time in all treatment groups regardless of fermentation conditions. However, the longer pre-fermentation time became, the faster the number of lactic acid bacteria increased. Most samples showed similar results late in the storage period; 7.2~7.4 log CFU/mL. PF0 had the greatest volume change 2.1 times increase late in the storage period. The sensory evaluation showed significant differences for flavor, taste, and overall acceptability after a partial storage period. PF28 stored for 2~3 days showed excellent flavor, and PF24 and PF28 stored for 2~3 days showed the highest scores of 6.27 to 6.67. The PF24 and PF28 treated samples were appropriate for commercializing small packed cabbage Kimchi and for alleviating the expansion problem of the packing material. However, because mass commercial production requires a large number of samples to be used at once, the results should be assessed for industrial product development in the future.