• Title/Summary/Keyword: Packing Design

Search Result 256, Processing Time 0.03 seconds

Optimum Shape Design of Cemented Carbide Micro-drill in Consideration of Productivity (생산성을 중시한 초경합금 소재 마이크로 드릴의 최적 형상설계)

  • 김건회
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.133-140
    • /
    • 2004
  • Recently reduction of industrial products in size and weight has been increased by application of micro-drills in gadgets of high precision and a great interest of a micro-drilling has been raised. Due to the lack of tool stiffness and the chip packing, the micro-drilling requires not only the robust tool structure which has not affected by vibration but also effective drilling methods designed to prevent tool fracture from cutting troubles. This paper presents an optimum design shape of a 0.15 mm micro-drill associated with a new manufacturing process to improve the production rate and to lengthen the tool life and suggestions on the micro-drilling characteristic properties associated with the tool life and workpiece quality.

A Study on Optimal Link Dimensioning of ATM Networks (ATM 망의 링크 용량 설계에 관한 연구)

  • 이희상;김상백;송해구
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.81-94
    • /
    • 1999
  • ATM network design procedure is different from the current circuit or packet networks design procedure because of the variety of the offered services and the variability of requested bandwidth for each connection of ATM network. A number of optimization models for the link dimensioning of ATM network design have been proposed in the literature. However, most of the literature did not consider the modularity of resources allocated to a transmission path and the non-bifurcation of a VP link over the more than one TP, which are standardized in recent ITU-T Recommendations. In thIs paper, we propose a mathematical model for link dimensioning of ATM networks, based on the network synthesis method and a generalized bin-packing problem. The suggested model satisfies the constraints mentioned in the ITU-T Recommendations. We also propose efficient and practical algorithms for the suggested model. Computational experiment shows that the suggested algorithm gives efficient solutions even for moderate and large-sized networks within reasonable time.

  • PDF

Shoemoulds Runner Shape Optimization using MoldFlow (MoldFlow를 이용한 신발 사출금형 러너부 형상 최적화)

  • 류미라;서영백;문병주;박흥식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1483-1486
    • /
    • 2003
  • Injection mold is a manufacturing process used to produce the various parts of complicated shape at a low cost. Many factors such as, section shape, resin and mold temperature, filling time, etc, affect on the quality of injection part during injection molding process. The precent study, was carried out the shrinkage analysis of shoes injection mold to optimize runner shape based on filling and packing pressure with MoldFlow. Taguchi design and analysis of variance are used to optimize injection mold design.

  • PDF

A Study on the Teaching Design of the Isoperimetric Problem on a Plane for Mathematically gifted students in the Elementary School - focused on the geometric methods - (초등 영재 교수.학습을 위한 평면에서의 등주문제 내용구성 연구 - 기하적인 방법을 중심으로 -)

  • Choi, Keun-Bae
    • The Mathematical Education
    • /
    • v.50 no.4
    • /
    • pp.441-466
    • /
    • 2011
  • In this article, we study on the teaching design, focused on the geometric methods, of 2-D isoperimetric problem for the elementary mathematically gifted students. For our teaching design, we discussed the ideals of Zenodorus's polygon proof, Steiner's four-hinge proof, Steiner's mean boundary proof, Steiner's snowball-packing proof, Edler's finite existence proof and Lawlor's dissection proof, and then the ideals achieved were modified with the theoretical backgrounds-the theory of Freudenthal's mathematisation, the method of analysis-synthesis. We expect that this article would contribute to the elementary mathematically gifted students to acquire and to improve spatial sense.

An Analysis of stress concentration and crack in injection mold by cavity pressure (사출금형에서 내압에 의한 응력집중 및 크랙 분석)

  • Choi, Sung-Hyun;Hang, Su-Jin;Choi, Sung-Ju;Lyu, Min-Young
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.159-162
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF

A Evaluation Method of Operational Performance for Air-operated Gate Valve (공기구동 게이트밸브의 운전 성능평가 방법에 관한 연구)

  • Kim, Dae-Woong;Park, Sung-Keun;Kang, Shin-Cheul;Kim, Yang-Suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The valve performance has been evaluated from the theoretical equation based on design information such as packing thrust, spring preload and friction coefficient(${\mu}$). The accuracy of those data can be lower than that of vendor's initial design data. Especially, the friction coefficient can be degraded with time than the original condition and the valve performance calculated using the previous friction coefficient can not be available. Accordingly, this paper is describing a new performance evaluation method of valve based on diagnostic test data which are acquired from a site valve tested in static and dynamic conditions. Especially, this paper provides a new method using friction coefficient(${\mu}$) which is derived from the diagnostic test data acquired in the valve's design basis condition.

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

A structural analysis of deep depth injection mold to investigate the cause of crack (깊이가 깊은 사출금형의 크랙 원인 파악을 위한 강도해석)

  • Choi, S.H.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.297-300
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF

Influences of Injection Molding Conditions on the Birefringence of a Disk (사출성형 조건이 디스크의 복굴절에 미치는 영향)

  • Park M.G.;Lee D.H.;Lee H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.305-309
    • /
    • 2005
  • A computer code was developed to simulate all three stages of the injection molding process ? filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. Based on the simulation, the Taguchi method was used to investigate the influences of injection molding conditions on the birefringence of a center gate disk. In addition, the optimal processing conditions were selected to minimize the birefringence and the birefringence difference along the positions of the disk.

  • PDF

The Study for Optimal Design of Spindle Insert used in Cotton Spinning Machine (방적기계용 스핀들 인서트의 최적설계 관한 연구)

  • Lee, Dong-Woo;Huh, Sun-Chul;Lee, Sang-Suk;Shim, Jae-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.72-78
    • /
    • 2010
  • Textile machinery affects various industry, such as sport leisure industry, metal and chemistry material, electric electron, mechanical energy, packing and printing industry. In case of design of textile machine, the very important fact is absorbing the minute vibration induced by spinning thread and insert which is the part of spindle plays a role of reduction of impact caused by oscillation of thread bobbin. Therefore, Optimal design was executed by design of experiments and kriging optimal design methods to prevent fracture of spindle insert under the fatigue condition and deduced the best value of design parameter to improve the stability of the products. The highest sensitivity is showed at the design parameter A and D. As the spiral number of insert is increase, tension force applied its edge is distributed at whole model and the stress concentration is reduced.