• Title/Summary/Keyword: Packet-base

Search Result 207, Processing Time 0.023 seconds

Delay Analysis for Packet Forward Scheme in Wireless Packet Networks

  • Koh, Seung-Kwang;Park, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.121-124
    • /
    • 1999
  • In a packet-switched wireless cellular network, a packet destined to a mobile station is queued at a base station and then broadcast over the base station's cell. When an active mobile station leaves a cell, there re-main packets which are destined to the mobile and not yet delivered to it at the cell's base station. For application which are sensitive to packet losses, such back- logged packets must be forwarded to the new base station. Otherwise, an end-to-end retransmission may be required. However, an increase in packet delay is incurred by employing the packet forward scheme, since a packet may be forwarded many times before it is delivered to the destined mobile station. For an enhanced quality-of-service level, it is preferred to reduce tile packet delay time. In this paper, we develop an analytical approximation method for deriving mean packet delay times. Using the approximation and simulation methods, we investigate the effect of network parameters on the packet delay time.

  • PDF

A Priority Packet Forwarding for TCP Performance Improvement in Mobile W based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 패킷 포워딩 우선권 보장 방안)

  • Hur, Kyeong;Roh, Young-Sup;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8B
    • /
    • pp.661-673
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and TCP transmission performance of a mobile user in the congested base station degrades due to increased congestion by those forwarded burst packets. In this paper, considering the general case that a mobile user moves to a congested base station, we propose a Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, without modification to Mobile IP protocol, the old base station marks a buffered packet as a priority packet during handoff. And priority queue at the new congested base station schedules the priority packet firstly. Simulation results show that proposed Priority Packet Forwarding can improve TCP transmission performance more than Implicit Priority Packet Forwarding and RED (Random Early Detection) schemes.

An MAC Protocol based on Code Status Sensing and Acquisition Indication in CDMA Networks

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.181-184
    • /
    • 2007
  • In this paper, a CSSMA/AI MAC protocol in packet CDMA network is presented. The main features of this protocol are the code status sensing and reservation for reducing the packet collision. The base station broadcasts the code status on a frame-by-frame basis just before the beginning of each preamble transmission, and the mobile station transmits a preamble for reserving a code based on the received code status. After having transmitted the preamble, the mobile station listens to the downlink of the selected code and waits the base station reply. If this reply indicates that the code has been correctly acquired, it continues the packet transmission for the rest of the frame. If there are other packets waiting for transmission, the base station broadcasts the status of the code as reserved, and the mobile station transmits a packet on a reserved code for the successive frames.

Performance Improvement of Wireless Uplink Channels Using Packet Diversity (패킷 다이버시티를 이용한 무선 상향 링크의 성능 개선)

  • Lee, Goo-Yeon;Kim, Hwa-Jong;Jeong, Choong-Kyo;Lee, Yong
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.187-192
    • /
    • 2004
  • In this paper, we introduce a packet diversity scheme to increase uplink channel utilization in a wireless network where forward error correction is used. The packet diversity allows neighbor base stations to receive uplink packets from a mobile terminal in order to increase the utilization of the uplink channel. By allowing multiple base stations to receive the same packets, we can improve the error correction capability in an uplink channel. By incorporating the packet diversity we can reduce the parity overhead of each packet for a given tolerable loss probability, which improves the link efficiency.

  • PDF

Improving TCP Performance by Implicit Priority Packet Forwarding in Mobile IP based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 암시적인 패킷 포워딩 우선권 보장 방안)

  • 허경;이승법;노재성;조성준;엄두섭;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.500-511
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and the wireless link utilization performance degrades due to increased congestion by those forwarded packets. In this paper, considering the case that a mobile user moves to a congested base station in a new foreign subnetwork, we propose an Implicit Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, the old base station marks a buffered packet as a priority packet during handoff. In addition, RED (Random Early Detection) at the new congested base station does not include priority packets in queue size and does not drop those packets randomly based on average queue size. Simulation results show that wireless link utilization performance of mobile hosts can be improved without modification to Mobile IP protocol by applying proposed Implicit Priority Packet Forwarding.

A Packet Forwarding Control Scheme for TCP Performance Improvement in Mobile Networks (모바일 네트워크에서 TCP 성능 향상을 위한 패킷 포워딩 제어 방안)

  • Hur, Kyeong;Eom, Doo-Seop;Lee, Seung-Hyun;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.353-364
    • /
    • 2002
  • To prevent the performance degradation of TCP due to packet loss in the smooth handoff by the route optimization extension of Mobile If protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers the packets dropped during the handoff by forwarding the buffered packets at the old base station to the mobile user. But, when the mobile user moves to a new foreign network which is connected to a congested router, the buffered packets forwarded by the old base station are dropped and the link utilization performance degraded due to increased congestion by the forwarded packets. In this paper, when the mobile user moves to a new foreign network which is connected to a congested router, Ive propose a packet forwarding control scheme required far the old base station to improve TCP performance in mobile networks. The old base station forwards or discards the buffered packets during handoff by proposed packet forwarding control scheme based on congestion states of RED(Random Early Detection) at the congested router. Simulation results slow that link utilization performance can be improved by applying proposed packet forwarding control scheme.

A Method for the Performance Ehancement of PRMA Protocol for Mobile Voice/Data Integration (음성/데이터 통합형 PRMA 프로토콜의 성능 개선 기법)

  • 송재섭;김연수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.423-430
    • /
    • 2000
  • Future microcellular systems will require distributed network control. A packet-switched network is suitable for this requirement. The packet reservation multiple access(PRMA) is a Reservation-ALOHA like protocol for wireless terminals to transmit packet speech to a base station. It allows spatially distributed users in cellular systems to transmit packeted voice and data to a common base station using a shared channel. In the existing PRMA, the problem is that the voice packets may collide with the data packets due to simultaneous channel access. the problem may be a major performance degradation factor to a voice and data mixed system. We propose a new PRMA method that integrates voice and data traffic efficiently by resolving the collision problem between data and voice packets. The proposed PRMA method gives a performance improvement than the existing PRAMA method in terms of voice packet dropping probability and data delay characteristic. From analytic results, we can confirm that the proposed PRMA method show a performance improvement than the existing PRMA protocol.

  • PDF

CSSMA/AI Protocol for Data Services in Packet CDMA Networks (패킷 CDMA 망에서 데이터 서비스를 위한 CSSMA/AI 프로토콜)

  • 임인택
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.475-478
    • /
    • 2004
  • In this paper, a CSSMA/AI MAC protocol for data services in packet CDMA network is presented. The proposed protocol is based on the code status sensing and reservation scheme. In the proposed protocol, the base station broadcast the rode status on a frame-by-frame basis just before the beginning of each preamble transmission, and the mobile station transmits a preamble for reserving a randomly selected code based on the received code status. After having transmitted the preamble, the mobile station listens to the downlink of the selected rode and waits for the base station reply. If this reply indicates that the code has been correctly acquired, it continues the packet transmission lot the rest of the frame. If there are other packets waiting for transmission, the base station broadcasts the status of the code as reserved, and the mobile station transmits a packet through the reserved code for the successive frames.

  • PDF

A Study of TCP Performance with Snoop Protocol over Fading Wireless Links

  • Cho, Yang-Bum;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.214-218
    • /
    • 2004
  • In this paper, we have analyzed TCP performance over wireless correlated fading links with and without Snoop protocol. For a given value of the packet error rate, TCP performance without Snoop protocol is degraded as the fading is getting fast (i.e. the user moves fast). When Snoop protocol is introduced in the base station, TCP performance is enhanced in most wireless environments. Especially the performance enhancement derived from using Snoop protocol is large in fast fading channel. This is because packet errors become random and sporadic in fast fading channel and these random packet errors (mostly single packet errors) can be compensated efficiently by Snoop protocol's local packet retransmissions. But Snoop protocol can't give a large performance improvement in slow fading environments where long bursts of packet errors occur. Concerning to packet error rate, Snoop protocol results in the highest performance enhancement in the channel with mid-high values of packet error rate. This means Snoop protocol cannot fully fulfill its ability under too low or too high packet error rate environments.

Modelling and Performance Evaluation of Packet Network by DEVS Simulation (DEVS 시뮬레이션을 이용한 패킷망의 모델링 및 성능분석)

  • 박상희
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.75-88
    • /
    • 1994
  • Discrete event modeling is finding ever more application to anlysis and design of complex manufacturing, communication, computer systems, etc. This paper shows how packet network systems may be advantageously represented as DEVS (Discrete Event System Specification) models by employing System Entity structure / Model base (SES/MB) framework developed by Zeigler. DEVS models and network structure representations support a strong basis for performance analysis of packet network systems. This approach is illustated in a typical packet network example with several routing strategies.

  • PDF