• Title/Summary/Keyword: Packet Service Time

Search Result 433, Processing Time 0.023 seconds

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Performance Analysis of LAN Interworking Unit for Capacity Dimensioning of Internet Access Links

  • Park, Chul-geun;Han, Dong-hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.692-699
    • /
    • 2000
  • We build and analyze some types of queueing model to discuss capacity dimensioning of access links of a LAN interworking unit connected to the Internet backbone network. We assume that the IWU has a FIFO buffer to transmit IP packets to the Internet through the backbone. In order to analyze the system, we use a Poisson process and an MMPP process as input traffic models of IP packets and we use a general service time distribution as a service time model. But we use both an exponential service time and a deterministic service time in numerical examples for simple and efficient performance comparisons. As performance measures, we obtain the packet loss probability and the mean packet delay. We present some numerical results to show the effect of arrival rate, buffer size and link capacity on packet loss and mean delay.

  • PDF

Priority Service Algorithm of Packet Switch for Improvement in QoS

  • Jung, Hae-Young;Lee, Heung-Jae;Choe, Jin-Kyu;Lee, Kyou-Ho
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.181-187
    • /
    • 2003
  • In high speed packet switching network, packet service by priority scheme prefer to QoS. Efficient packet service according to the priority scheme in high speed packet switch is a key point. Therefore development of priority service algorithm in the packet switch is very important. In this paper, we proposed W-iSLIP algorithm that service time take queue length into consideration and compared the proposed W-iSLIP algorithm to other previous proposed algorithm through simulation. Simulation results show 2.6% performance elevation in average delay, and 34.6% performance elevation in priority service.

  • PDF

Study on the Measurement-Based Packet Loss Rates Assuring for End-to-End Delay-Constrained Traffic Flow (지연 제한 트래픽 흐름에 대한 측정 기반 패킷 손실률 보장에 관한 연구)

  • Kim, Taejoon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1030-1037
    • /
    • 2017
  • Traffic flows of real-time multimedia services such as Internet phone and IPTV are bounded on the end-to-end delay. Packets violating their delay limits will be dropped at a router because of not useful anymore. Service providers promise the quality of their providing services in terms of SLA(Service Level Agreement), and they, especially, have to guarantee the packet loss rates listed in the SLA. This paper is about a method to guarantee the required packet loss rate of each traffic flow keeping the high network resource utilization as well. In details, it assures the required loss rate by adjusting adaptively the timestamps of packets of the flow according to the difference between the required and measured loss rates in the lossy Weighted Fair Queuing(WFQ) scheduler. The proposed method is expected to be highly applicable because of assuring the packet loss rates regardless of the fluctuations of offered traffic load in terms of quality of services and statistical characteristics.

Integrated Packet Scheduling for VoIP Service (VoIP 서비스를 위한 통합 패킷 스케줄링)

  • Lee, Eun-Joung;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2124-2126
    • /
    • 2008
  • In the wireless communication systems, the demand of multimedia services is also increased. Unlike typical data packets, realtime service such as VoIP packets have delay bound and low loss rate requirement. In this paper we propose a new scheduling algorithm that be able to allocate resources to the different kinds of services such as VoIP and data packet. The proposed algorithm considers both time delay and channel condition toe determine the priority. Simulation results show that the proposed algorithm works more efficiently than the conventional algorithms.

Joint Packet and Sub-carrier Allocation Scheme to Ensure Reliable Multimedia Service in OFDMA Multicast System (OFDMA 멀티캐스트 시스템에서 신뢰성 있는 멀티미디어 서비스를 보장하기 위한 패킷 및 서브 캐리어 할당 기법)

  • Gwak, Yong-Su;Kim, Yong-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.8-12
    • /
    • 2009
  • We propose BMPA(balanced multimedia packet allocation) scheme. This scheme considers the issue of optimal sub-carrier allocation in OFDMA multicast system. When RT(real time) packets and NRT(non-real time) packets arrive at the same time, BMPA scheme gives higher weight to RT packets than NRT packets and then, it allocates sub-carriers according to the total weight sum of packets in each user. This process acts as both packet scheduler and sub-carrier allocation. Therefore, each user receives multimedia packets with reliability. With simulation results, it shows that BMPA scheme ensures long-term system throughput and, in average RT packet delay, BMPA scheme greatly outperforms multi-user water-filling algorithm.

Packet Loss Fair Scheduling Scheme for Real-Time Traffic in OFDMA Systems

  • Shin, Seok-Joo;Ryu, Byung-Han
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.391-396
    • /
    • 2004
  • In this paper, we propose a packet scheduling discipline called packet loss fair scheduling, in which the packet loss of each user from different real-time traffic is fairly distributed according to the quality of service requirements. We consider an orthogonal frequency division multiple access (OFDMA) system. The basic frame structure of the system is for the downlink in a cellular packet network, where the time axis is divided into a finite number of slots within a frame, and the frequency axis is segmented into subchannels that consist of multiple subcarriers. In addition, to compensate for fast and slow channel variation, we employ a link adaptation technique such as adaptive modulation and coding. From the simulation results, our proposed packet scheduling scheme can support QoS differentiations while guaranteeing short-term fairness as well as long-term fairness for various real-time traffic.

  • PDF

Hierarchical Fair Queueing: A Credit-based Approach for Hierarchical Link Sharing

  • Jun, Andrew Do-Sung;Choe, Jin-Woo;Leon-Garcia, Alberto
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.209-220
    • /
    • 2002
  • In this paper, we propose a hierarchical packet scheduling technique to closely approximate a hierarchical extension of the generalized processor sharing model, Hierarchical Generalized Processor Sharing (H-GPS). Our approach is to undertake the tasks of service guarantee and hierarchical link sharing in an independent manner so that each task best serves its own objective. The H-GPS model is decomposed into two separate service components: the guaranteed service component to consistently provide performance guarantees over the entire system, and the excess service component to fairly distribute spare bandwidth according to the hierarchical scheduling rule. For tight and harmonized integration of the two service components into a single packet scheduling algorithm, we introduce two novel concepts of distributed virtual time and service credit, and develop a packet version of H-GPS called Hierarchical Fair Queueing (HFQ). We demonstrate the layerindependent performance of the HFQ algorithm through simulation results.

Delay Analysis for Packet Forward Scheme in Wireless Packet Networks

  • Koh, Seung-Kwang;Park, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.121-124
    • /
    • 1999
  • In a packet-switched wireless cellular network, a packet destined to a mobile station is queued at a base station and then broadcast over the base station's cell. When an active mobile station leaves a cell, there re-main packets which are destined to the mobile and not yet delivered to it at the cell's base station. For application which are sensitive to packet losses, such back- logged packets must be forwarded to the new base station. Otherwise, an end-to-end retransmission may be required. However, an increase in packet delay is incurred by employing the packet forward scheme, since a packet may be forwarded many times before it is delivered to the destined mobile station. For an enhanced quality-of-service level, it is preferred to reduce tile packet delay time. In this paper, we develop an analytical approximation method for deriving mean packet delay times. Using the approximation and simulation methods, we investigate the effect of network parameters on the packet delay time.

  • PDF

Downlink Wireless Adaptive Modulation and Coding Scheme (AMC)-based Priority Queuing Scheduling Algorithm for Multimedia Services

  • Park, Seung-Young;Kim, Dong-Hoi
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1622-1631
    • /
    • 2007
  • To realize the wireless packet scheduler which efficiently considers both the effect of adaptive modulation and coding (AMC) scheme due to variable wireless communication channel information from physical layer and the QoS differentiation of multimedia services from internet protocol (IP) layer, this paper proposes a new downlink AMC-based priority queuing (APQ) scheduler which combines AMC scheme and service priority method in multimedia services at the same time. The result of numerical analysis shows that the proposed APQ algorithm plays a role in increasing the number of services satisfying the mean waiting time requirements per each service in multimedia services because the APQ scheme allows the mean waiting time of each service to be reduced much more than existing packet scheduler having only user selection processor.

  • PDF