• Title/Summary/Keyword: Packet Encryption

Search Result 59, Processing Time 0.028 seconds

Ad-hoc Security Authentication Technique based on Verifier (검증자 기반 Ad-hoc 보안 인증기법)

  • Lee, Cheol-Seung;Hong, Seong-Pyo;Lee, Ho-Young;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.713-716
    • /
    • 2007
  • This paper suggests One-time Password key exchange authentication technique for a strong authentication based on Ad-hoc Networks and through identify wireless environment security vulnerabilities, analyzes current authentication techniques. The suggested authentication technique consists of 3 steps: Routing, Registration, and Running. The Routing step sets a safe route using AODV protocol. The Registration and Running step apply the One-time password S/key and the DH-EKE based on the password, for source node authentication. In setting the Session key for safe packet transmission and data encryption, the suggested authentication technique encrypts message as H(pwd) verifiers, performs key exchange and utilizes One time password for the password possession verification and the efficiency enhancement. EKE sets end to end session key using the DH-EKE in which it expounds the identifier to hash function with the modula exponent. A safe session key exchange is possible through encryption of the H(pwd) verifier.

  • PDF

One time password key exchange Authentication technique based on MANET (MANET 기반 원타임 패스워드 키교환 인증기법)

  • Lee, Cheol-Seung;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1367-1372
    • /
    • 2007
  • This paper suggests One-time Password key exchange authentication technique for a strong authentication based on MANET and through identify wireless environment security vulnerabilities, analyzes current authentication techniques. The suggested authentication technique consists of 3 steps: Routing, Registration, and Running. The Routing step sets a safe route using AODV protocol. The Registration and Running step apply the One-time password S/key and the DH-EKE based on the password, for source node authentication. In setting the Session key for safe packet transmission and data encryption, the suggested authentication technique encrypts message as H(pwd) verifiers, performs key exchange and utilizes One time password for the password possession verification and the efficiency enhancement. EKE sets end to end session key using the DH-EKE in which it expounds the identifier to hash function with the modula exponent. A safe session key exchange is possible through encryption of the H(pwd) verifier. The suggested authentication technique requires exponentiation and is applicable in the wireless network environment because it transmits data at a time for key sharing, which proves it is a strong and reliable authentication technique based on the complete MANET.

Open Based Network Security System Architecture (개방형 네트워크 보안 시스템 구조)

  • Kim, Chang-Su;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.643-650
    • /
    • 2008
  • If existing system need to expand security part, the security was established after paying much cost, processing of complicated installation and being patient with inconvenience at user's view because of closed structure. In this thesis, those defects could be overcome by using open security tools and constructing security server, which is firewall of 'bastion' form including proxy server, certification server and so on. Also each security object host comes to decide acceptance or denial where each packet comes from, then determines security level each hosts. Precisely it is possible choosing the packets from bastion host or following at the other policies. Although an intruder enter into inside directly, it is constructed safely because encryption algorithm is applied at communication with security object host. This thesis suggests more flexible, independent and open security system, which improves existing security through systematic linkage between system security and network security.

Design and Implementation of the Cdma2000 EV-DO security layer supporting Hardware using FPGA (FPGA를 이용한 Cdma2000 EV-DO 시큐리티 지원 하드웨어 설계 및 구현)

  • Kwon, Hwan-Woo;Lee, Ki-Man;Yang, Jong-Won;Seo, Chang-Ho;Ha, Kyung-Ju
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.65-73
    • /
    • 2008
  • Security layer of the Cdma2000 1x EV-DO is currently completing standard (C.S0024-A v2.0). Accordingly, a hardware security devices, that allows to implementation requirement of the security layer described in standard document, is required to apply security function about data transferred between AT and AN of then Cdma2000 1x EV-DO environment. This paper represents design of hardware device providing EV-DO security with simulation of the security layer protocol via the FPGA platform. The SHA-1 hash algorithm for certification and service of packet data, and the AES, SEED, ARIA algorithms for data encryption are equip in this device. And paper represents implementation of hardware that applies optionally certification and encryption function after executing key-switch using key-switching algorithm.

Mutual Authentication Protocol for Safe Data Transmission of Multi-distributed Web Cluster Model (다중 분산 웹 클러스터모델의 안전한 데이터 전송을 위한 상호 인증 프로토콜)

  • Lee, Kee-Jun;Kim, Chang-Won;Jeong, Chae-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.731-740
    • /
    • 2001
  • Multi-distributed web cluster model expanding conventional cluster system is the cluster system which processes large-scaled work demanded from users with parallel computing method by building a number of system nodes on open network into a single imaginary network. Multi-distributed web cluster model on the structured characteristics exposes internal system nodes by an illegal third party and has a potential that normal job performance is impossible by the intentional prevention and attack in cooperative work among system nodes. This paper presents the mutual authentication protocol of system nodes through key division method for the authentication of system nodes concerned in the registration, requirement and cooperation of service code block of system nodes and collecting the results and then designs SNKDC which controls and divides symmetrical keys of the whole system nodes safely and effectively. SNKDC divides symmetrical keys required for performing the work of system nodes and the system nodes transmit encoded packet based on the key provided. Encryption packet given and taken between system nodes is decoded by a third party or can prevent the outflow of information through false message.

  • PDF

Countermeasure of Sniffing Attack: Survey (효율적인 Sniffing 공격 대응방안 연구)

  • Hong, Sunghyuck;Seo, Yujeong
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.2
    • /
    • pp.31-36
    • /
    • 2016
  • Sniffing attack is a passive attack which is reassembling packets to collect personal information, bank accounting number, and other important information. Sniffing attack happens in LAN and uses promiscuous mode which is opening filtering by pass all packets in LAN, attackers could catch any packets in LAN, so they can manipulate packets. They are Switch Jamming, Port mirroring, ARP Redirect, and ICMP Redirect attack. To defend these attacks, I proposed to use SSL packet encryption, reconfiguration of switching environment, DNS, and decoy method for defending all kinds of Sniffing attacks.

Method to Analyze Information Leakage Malware using SSL Communication in Android Platform

  • Cho, Gilsu;Kim, Sangwho;Ryou, Jaecheol
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • Widely used around the world, smartphones contain many features and can store content such as contacts, photos, and videos. Information that can be leaked in proportion to the information that the smartphone can store has also been increased. In recent years, accidents such as personal information leakage have occurred frequently. Personal information leakage is happening in the Android environment, which accounts for more than half of the smartphone operating system market share. Analyzing malicious apps that leak information can tell you how to prevent information leakage. Malicious apps that leak information will send importantinformation to the hacker's (C & C) server, which will use network communication. Malicious apps that are emerging nowadays encrypt and transmit important information through SSL communication. In this case, it is difficult to knowwhat kind of information is exposed to network. Therefore, we suggest a method to analyze malicious apps when leak important information through SSL communication. In this paper, we identify the way malicious apps leak information. And we propose a method for analyzing information leaked by SSL communication. Data before encryption was confirmed in the device through SSL hooking and SSL Strip method.

A Study on the Enhancement of MQTT Protocol with Centralized Key Management (중앙 집중식 키 관리를 통한 MQTT 프로토콜 효율성 증대 연구)

  • Won, Chan-hee;Kim, keecheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.312-313
    • /
    • 2017
  • Internet of Things(IoT) is an intelligent technology and service in which all objects communicate with each other through various networks. Recently Internet of Things(IoT) is one of the fields that is attracting attention as the development of ICT industry. MQTT is a protocol which is safe using TLS or adopting light packet structure for effciency of memory and power using. In this paper, when TLS is used the process of encryption / decryption in the broker occurs. We propose an efficient MQTT protocol through centralized key management by adding authentication server.

  • PDF

Design and Performance Evaluation of the Secure Transmission Module for Three-dimensional Medical Image System based on Web PACS (3차원 의료영상시스템을 위한 웹 PACS 기반 보안전송모듈의 설계 및 성능평가)

  • Kim, Jungchae;Yoo, Sun Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.179-186
    • /
    • 2013
  • PACS is a medical system for digital medical images, and PACS expand to web-based service using public network, DICOM files should be protected from the man-in-the-middle attack because they have personal medical record. To solve the problem, we designed flexible secure transmission system using IPSec and adopted to a web-based three-dimensional medical image system. And next, we performed the performance evaluation changing integrity and encryption algorithm using DICOM volume dataset. At that time, combinations of the algorithm was 'DES-MD5', 'DES-SHA1', '3DES-MD5', and '3DES-SHA1, and the experiment was performed on our test-bed. In experimental result, the overall performance was affected by encryption algorithms than integrity algorithms, DES was approximately 50% of throughput degradation and 3DES was about to 65% of throughput degradation. Also when DICOM volume dataset was transmitted using secure transmission system, the network performance degradation had shown because of increased packet overhead. As a result, server and network performance degradation occurs for secure transmission system by ensuring the secure exchange of messages. Thus, if the secure transmission system adopted to the medical images that should be protected, it could solve server performance gradation and compose secure web PACS.

Dynamic States Consideration for Next Hop Nodes Selection Method to Improve Energy Efficiency in LEAP based Wireless Sensor Networks (LEAP기반의 무선 센서 네트워크에서 가변적 상태를 고려한 에너지 효율적 다음 홉 노드 선택 기법)

  • Nam, Su-Man;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.558-564
    • /
    • 2013
  • Wireless sensor networks (WSNs) contain limited energy resources and are left in open environments. Since these sensor nodes are self-operated, attacks such as sinkhole attacks are possible as they can be compromised by an adversary. The sinkhole attack may cause to change initially constructed routing paths, and capture of significant information at the compromised node. A localized encryption and authentication protocol (LEAP) has been proposed to authenticate packets and node states by using four types of keys against the sinkhole attack. Even though this novel approach can securely transmits the packets to a base station, the packets are forwarded along the constructed paths without checking the next hop node states. In this paper, we propose the next hop node selection method to cater this problem. Our proposed method evaluates the next hop node considering three factors (i.e., remaining energy level, number of shared keys, and number of filtered false packets). When the suitability criterion for next hop node selection is satisfied against a fix threshold value, the packet is forwarded to the next hop node. We aim to enhance energy efficiency and a detour of attacked areas to be effectively selected Experimental results demonstrate validity of the proposed method with up to 6% energy saving against the sinkhole attack as compared to the LEAP.