International Journal of Computer Science & Network Security
/
제24권10호
/
pp.115-124
/
2024
In current day information transmitted from one place to another by using network communication technology. Due to such transmission of information, networking system required a high security environment. The main strategy to secure this environment is to correctly identify the packet and detect if the packet contain a malicious and any illegal activity happened in network environments. To accomplish this we use intrusion detection system (IDS). Intrusion detection is a security technology that design detects and automatically alert or notify to a responsible person. However, creating an efficient Intrusion Detection System face a number of challenges. These challenges are false detection and the data contain high number of features. Currently many researchers use machine learning techniques to overcome the limitation of intrusion detection and increase the efficiency of intrusion detection for correctly identify the packet either the packet is normal or malicious. Many machine-learning techniques use in intrusion detection. However, the question is which machine learning classifiers has been potentially to address intrusion detection issue in network security environment. Choosing the appropriate machine learning techniques required to improve the accuracy of intrusion detection system. In this work, three machine learning classifier are analyzed. Support vector Machine, Naïve Bayes Classifier and K-Nearest Neighbor classifiers. These algorithms tested using NSL KDD dataset by using the combination of Chi square and Extra Tree feature selection method and Python used to implement, analyze and evaluate the classifiers. Experimental result show that K-Nearest Neighbor classifiers outperform the method in categorizing the packet either is normal or malicious.
Deep packet inspection is widely recognized as a powerful way which is used for intrusion detection systems for inspecting, deterring and deflecting malicious attacks over the network. Fundamentally, almost intrusion detection systems have the ability to search through packets and identify contents that match with known attach. In this paper we survey the deep packet inspection implementations techniques, research challenges and algorithm. Finally, we provide a comparison between the different applied system.
침입탐지 알고리즘이 다른 침입탐지 시스템의 알고리즘보다 월등히 뛰어나더라도 버퍼가 가득 찼을때 포착된 패킷은 시스템 구조상에서 패킷을 손실시킨다. 만일 손실된 패킷이 해킹 될 것으로 우려된다면 시스템 전반에 영향을 미칠 것이다. 본 논문에서는 탐지시스템의 성능을 개선시키는 데에 초점 맞추고자 한다. 임계값을 갖고 있는 버퍼는 정상적인 패킷과 해킹 된 패킷을 구분할 것이다. 임계값 전까지는 버퍼는 정상적인 패킷과 해킹 될 수도 있는 패킷을 받아들일 것이다 버퍼가 임계간에 도달하였을 때, 폐기된 패킷은 단지 정상적 패킷만 일 것이다 제안된 해킹방법은 해킹 된 패킷이 바이패스되는 단점을 보완할 것이다.
Journal of information and communication convergence engineering
/
제4권4호
/
pp.174-179
/
2006
In this paper we present a text detection method inspired by wavelet packet analysis and improved fuzzy clustering algorithm(IAFC).This approach assumes that the text and non-text regions are considered as two different texture regions. The text detection is achieved by using wavelet packet analysis as a feature analysis. The wavelet packet analysis is a method of wavelet decomposition that offers a richer range of possibilities for document image. From these multi scale features, we adapt the improved fuzzy clustering algorithm based on the unsupervised learning rule. The results show that our text detection method is effective for document images scanned from newspapers and journals.
본 논문은 IEEE802.11n 시스템의 패킷 검출에 필요한 알고리즘을 제안한다. IEEE802.11n 시스템은 다중 송수신 안테나 시스템으로서 IEEE802.11a 시스템에서 적용되는 알고리즘과 달리 다중 수신부에서 적용 가능한 결합 기법을 고려하여 적용하여야 한다. 따라서 본 논문에서는 단일 송수신 안테나 시스템에서 사용하는 이중 슬라이딩 윈도우 알고리즘과 지연 후 상관 알고리즘을 다중 수신 안테나 결합 알고리즘과 하이브리드하게 결합하여 패킷 검출부 알고리즘을 제시하고, 각각의 성능을 11n 환경에서 모의 실험하고 그 결과를 제시하였다.
The wavelet packet transform has been applied for QRS detection with squaring, window integration, and impulse filter techniques to cut down the false detection of QRS complex. This real time QRS detection has been performed on Simulink and Matlab. The correct QRS detection rates have reached to 99.75% in the experiment with 15 sets of ECG data from European ST-T database which are kept in Physionet.
본 논문은 mmWave OFDM-기반 WPAN 시스템을 위한 패킷 검출과 주파수 옵셋 추정 및 보정 구조를 제안하고 성능 분석 결과를 보여준다. 패킷 검출 블록은 반복된 훈련 심볼의 자기상관 관계를 이용하고 상관된 값이 일정 문턱 값을 넘을 때 패킷 시작점을 검출하는데 사용된다. 적용한 자기상관 알고리즘 구조는 기존의 패킷검출에 사용한 알고리즘에 비해 간단하게 하드웨어를 구현 할 수 있다. 주파수 옵셋 추정 구조는 기존구조와는 다른 위상 천이 처리 블록, 하드웨어 사이즈를 줄여주는 내부비트 줄임 블록 및 look-up table의 사이즈를 줄인 주파수 옵셋 조정 블록을 설계하였다. 추정된 주파수 옵셋 값은 설계한 보정 블록을 통해 수신 신호를 보정함으로써 주파수 옵셋에 대한 영향을 줄일 수 있다. 설계 검증툴을 이용한 성능 분석 결과 제안된 구조는 하드웨어 구현복잡도가 감소함을 보여 주었고 기존구조에 비하여 게이트수가 감소함을 보였다. 따라서 제안된 구조는 OFDM-기반 WPAN 시스템의 초기 동기화 과정에 적용 될 수 있고 고속 저전력 WPAN칩에 사용 될 수 있다.
본 논문에서는 IPv6를 적용한 표준인 IEEE 802.15.4e와 RPL을 기반으로 하는 사물인터넷 환경에서 가용성을 확보하기 위하여 패킷 유실 공격 탐지 기법과 우회 기법을 제안한다. RPL의 순위값과 패킷 유실 연속성을 고려하여 패킷 유실 탐지 메트릭을 개선하였고 RPL을 통해 생성된 라우팅 경로에서 형제노드 및 자식노드를 활용한 우회기법을 구성하였다. 시뮬레이션을 통해 제안한 탐지 기법의 탐지 속도가 향상되었음을 확인하였고 제안한 우회 기법의 우회 성공률이 향상되었음을 확인하였다.
본 논문에서는 WPD (Wavelet Packet Decomposition) 계수에 Teager 에너지를 적용한 특징 계수를 임계값 알고리듬에 적용하여 잡음에 강인한 VAD 알고리듬을 제안하였다. 임계값은 비음성 구간의 평균과 표준편차를 추산하여 설정하였다. TIMIT 음성과 NOISEX 잡음 데이터베이스를 사용한 실험 결과, 제안된 알고리듬이 기존의 대표적인 비교 대상 알고리듬보다 우수함을 보였다. 정확도는 SNR 10 dB부터 -10 dB까지 ROC (Receiver Operating Characteristics) 곡선을 사용하여 비교하였다.
침입탐지시스템에 대해 많은 연구가 이루어지고 있지만 이들 연구는 침입탐지시스템내의 탐지 소프트웨어의 알고리즘에만 국한되어 있다. 하지만, 침입탐지시스템의 탐지 알고리즘이 우수하더라도 침입에 해당하는 단서인 패킷을 손실하게 되면 해당 침입을 탐지해내지 못하게 된다. 본 논문에서는 침입 탐지 시스템의 하드웨어적인 한계와 탐지 소프트웨어의 거대화에 따른 시스템 부하로 인해서 자연히 발생하게 되는 패킷 손실을 줄이기 위해서 탐지 시스템에 불필요한 패킷으로 분류될 수 있는 패킷을 미리 폐기함으로써 얻을 수 있는 탐지 시스템의 성능 향상을 다룬다. 실험 결과에 따르면 제안한 방법에 의해서 패킷 손실인 줄어들어 실제 공격에 대한 탐지율이 개선되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.