• Title/Summary/Keyword: Pack ice 조건

Search Result 5, Processing Time 0.019 seconds

Development of Model Test Methodology of Pack Ice in Square Type Ice Tank (사각 빙해수조에서의 Pack Ice 모형시험 기법 개발)

  • Cho, Seong-Rak;Yoo, Chang-Soo;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.390-395
    • /
    • 2011
  • The main purpose of ice model basin is to assess and evaluate the performance of the Arctic ships and offshore structures because the full-scale tests in ice covered sea are usually very expensive and difficult. There are various ice conditions, such as level ice, brash ice, pack ice and ice ridge, in the real sea. To estimate their capacities in ice tank accurately, an appropriate model ice sheet and prepared ice conditions copied from actual sea ice conditions are needed. Pack ice is a floating ice that has been driven together into a single mass and a mixture of ice fragments of varying size and age that are squeezed together and cover the sea surface with little or no open water. So Ice-class vessels and Icebreaker are usually operated in pack ice conditions for the long time of her voyage. The most ice model tests include the pack ice test with the change of pack ice concentration. In this paper, the effect of pack ice size and channel breadth in pack ice model test is conducted and analyzed. Also we presented some techniques for the calculation of pack ice concentration in the model test. Finally, we developed a new model test methodology of pack ice condition in square type ice tank.

Effect of the ice pack treatment in the corrugated box for improving the storage quality of the oriental melon (Cucumis melo var. makuwa) at high temperature conditions during summer (여름철 고온 환경 조건에서 참외(Cucumis melo var. makuwa)의 저장 중 선도유지를 위한 아이스 팩 처리 포장 박스 적용 연구)

  • Choi, Woo Suk;Chung, Dae-Sung;Lee, Youn Suk
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.25-33
    • /
    • 2014
  • The effects of the ice pack and aluminum coated board in the corrugated boxes for maintaining the quality of fresh oriental melons (Cucumis melo var. makuwa) were investigated. The harvested oriental melons were stored at a temperature of $30^{\circ}C$ for 21 days after placing them in the corrugated boxes treated with control, including ice pack and aluminum coated board. The treatment with the ice pack and aluminum coated board was identified to have maintained the relative low temperature in the corrugated box against the high temperature from the environment. For the storage study of the oriental melon, the treatments with the ice pack and aluminum coated board reduced the respiration rate, the development of external color, and total weight loss. All treatments were also effective in maintaining the firmness and decreasing the decay ratio of the oriental melon as compared to those that were controlled. However, the value of total soluble solids regarding the fruit was insignificantly affected by the ice pack treatment. The results indicated that the application of the ice pack and aluminum coated board in the corrugated box played an important role in maintaining the quality of oriental melons during storage. The combination with the ice pack and aluminum coated board had more effective values on the storage qualities for oriental melons than that with the ice pack only. Based on the results of this study, the ice pack and aluminum coated board were the useful treatments for reducing the loss of quality of the fresh oriental melons in high temperature storage conditions.

Estimation Method for Ice load of Managed Ice in an Oblique Condition (깨어진 해빙의 사항조건에서 빙 하중 추정법 연구)

  • Kim, Hyunsoo;Lee, Jae-bin
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Recently, as sea ice in the Arctic has been decreasing due to global warming, it has become easier to develop oil and gas resources buried in the Arctic region. As a result, Russia, the United States, and other Arctic coastal states are increasingly interested in the development of oil and gas resources, and the demand for offshore structures to support Arctic sea resources development is expected to significantly increase. Since offshore structures operating in Arctic regions need to secure safety against various drifting ice conditions, the concept of an ice-strengthened design is introduced here, with a priority on calculation of ice load. Although research on the estimation of ice load has been carried out all over the world, most ice-load studies have been limited to estimating the ice load of the icebreaker in a non-oblique state. Meanwhile, in the case of Arctic offshore structures, although it is also necessary to estimate the ice load according to oblique angles, the overall research on this topic is insufficient. In this paper, we suggest algorithms for calculating the ice load of managed ice (pack ice, 100% concentration) in an oblique state, and discuss validity. The effect of oblique angle according to estimated ice load with various oblique angles was also analyzed, along with the impact of ship speed and ice thickness on ice load.

Numerical Simulation on the Response of Moored Semi-submersible Under Ice Load (유빙 하중을 받는 계류된 반잠수식 시추선의 응답해석)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • This study simulated ice load and the motion response of a moored semi-submersible rig in pack-ice conditions using a finite element method. Ice flows of random size and shape were modeled, and interactions for ice-sea, ice-structure, ice-ice were simulated using a simplified method. Parameters for the simplified method such as drag force coefficient and the pressure-penetration relation were obtained based on the result of detailed analysis using the coupled Eulerian-Lagrangian method. The mooring lines were modeled by spring elements based on their stiffness. As a result of the simulation over 1,400 seconds, the force and motion response of the rig were obtained and validated using discrete elements and compared with the results found by the Krylov State Research Centre.