• Title/Summary/Keyword: PZT 센서

Search Result 194, Processing Time 0.019 seconds

A Damage Measurement of Steel Beam using PZT Sensor (PZT센서를 이용한 철골보 손상계측)

  • Seo, Hye-Won;Park, Min-Suk;Lee, Swoo-Heon;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • Various monitoring sensors are used to predict and detect structural damage. Smart sensors, such as glass-fiber sensors, PZT, and MEMS, among others, have replaced traditional sensors. They are now being used in many areas. This study aims to predict the damage by measuring the PZT voltage attached on the specimen by the applied impact load. In the experiment to detect damages in beam connection, simple $H-400{\times}200{\times}8{\times}13$ beams were spliced with bolts. The results of FFT between PZT sensor and accelrometer were compared to measure the sensitivity of the PZT sensor. The damage to the beam was presumed by loosening the bolt, and then the damage measurement was accompanied. Secondly, a steel $PL600{\times}65{\times}5.8$ plate beam was fabricated for the purpose of experimenting on damage measurement. Impact loading test on three different locations was carried out. Damage width varied between 6~42mm on both sides by cutting, using a steel saw. The ratio of frequencies before and after the damage was computed to quantify the damage level by using FFT, and the change in mode pattern with the increased damage was investigated to measure the damage.

PZT보를 이용한 진동센서의 동특성 해석 및 센서의 최적 설계

  • 정이봉
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.35-41
    • /
    • 1996
  • 본 연구에서는 PZT를 이용한 Bimorph Cantilever형 진동센서의 동특성을 모달해석하고 이를 압전세라믹의 센서방정식과 연계하여 센서출력의 정밀해를 구하였다. 그리고 이론식에 대한 시간응답 특성 및 주파수응답 특성을 알아보고 각각의 특성을 만족시키기 위한 센서의 최적설계 기법을 컴퓨터 Simulation을 통하여 알아보았다. 그리고 PZT를 이용한 Bimorph Cantilever형 진동센서를 직접 제작하고 그 실험적 데이터를 수식적 데이터와 비교하여 이론식의 타당성을 검증하였다.

  • PDF

Evaluation of Nondestructive Damage Sensitivity on Single-Basalt Fiber/Epoxy Composites using Micromechanical Test and Acoustic Emission with PZT and PVDF Sensors (PZT 및 PVDF 센서에 따른 음향방출과 Micromechanical 시험법을 이용한 단일 Basalt 섬유 강화 에폭시 복합재료의 비파괴 손상감지능 평가)

  • Kim, Dae-Sik;Park, Joung-Man;Jung, Jin-Kyu;Kong, Jin-Woo;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.61-67
    • /
    • 2004
  • Nondestructive damage sensitivity on single-basalt fiber/epoxy composites was evaluated by micromechanical technique and acoustic emission (AE). Piezoelectric lead-zirconate-titanate (PZT), polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer were used as AE sensor, respectively. In single-fiber composite, the damage sensing with different sensor types were compared to each other. Piezoelectric PVDF polymer sensor was embedded in and attached on the composite, whereas PZT sensor was only attached on the surface of specimen. In case of embedded polymer sensors, responding sensitivity was higher than that of the attached case. It can be due to full constraint inside specimen to transfer elastic wave coming from micro-deformation. For both the attached and the embedded cases, the sensitivity of P(VDF-TrFE) sensor was almost same as that of conventional PVDF sensor.

Fabrication and Characteristics of FET-type Pressure Sensor Using Piezoelectric PZT Thin Film (압전체 PZT 박막을 이용한 FET형 압력 센서의 제작과 그 특성)

  • Kim, Young-Jin;Lee, Young-Chul;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-179
    • /
    • 2001
  • The currently used semiconductor pressure sensors are piezoresistive and capacitive type. Especially, semiconductor micro pressure sensors have a great deal of attention because of their small size. However, its fabrication processes are difficult, so that its yield is poor. For the purpose of resolving the drawbacks of the existing silicon pressure sensors, we demonstrate a new type of pressure sensor using PSFET(pressure sensitive field effect transistor) and investigate its operational characteristics. We used PZT(Pb(Zr,Ti)$O_3$) as a pressure sensing material. PZT thin films were deposited on a gate oxide of MOSFET by an rf-magnetron sputtering method. To abtain the stable phase, perovskite structure, furnace annealing technique have been employed in PbO ambient. The sensitivity of the PSFET was 0.38 mV/mmHg.

  • PDF

A study on the crystalline orientation and electric properties of sol-gel PZT thin film for piezoelectric sensors (졸겔 법으로 제조한 압전 센서용 PZT 박막의 결정 배향 및 전기적 특성 연구)

  • Byun, Jin-Moo;Lee, Ho-Nyun;Lee, Hong-Kee;Lee, Seong-Eui;Lee, Hee-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.202-208
    • /
    • 2010
  • This study examined the dependency of crystalline orientation and electric properties of sol-gel PZT film on hydrolysis, a $PbTiO_3$ seed layer and a concentration of sol-gel solution. The PZT thin films were prepared by using 2-Methoxyethanol-based sol-gel method and spin-coating on Pt/Ti/$SiO_2$/Si substrates. The 1-${\mu}m$-thick PZT films were coated and then fired in a furnace by direct insert method. The highly (111) oriented PZT film of pure perovskite structure could be obtained. We could control the degree of orientation by various parameters such as hydrolysis, a $PbTiO_3$ seed layer and a concentration of sol-gel solution. The highest measured remanent polarization, dielectric constant and piezoelectric coefficient are $24.16\;{\mu}C/cm^2$, 2808, and 159 pC/N, respectively.

Development of Ultrasonic Sensors for Simultaneous Measurement of Longitudinal and Shear Waves (종-횡파 동시 측정용 초음파 센서의 개발)

  • Kim, Yeon-Bo;Rho, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • A study has been made on the fabrication of a dual mode(a longitudinal and shear mode) ultrasonic sensor using a single PZT piezoelectric ceramic element. We investigated the mechanism of the dual mode sensor that generated both of the longitudinal and the shear waves simultaneously with the single PZT element. Through the analysis of analytic wave propagation equations, all the possible crystal cuts have been examined to determine appropriate Euler transformation angles for efficient excitations of the dual modes. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves of equal strength. Experimental examination of the waveform on a delay line(STS303) setup confirms that the ultrasonic sensor can transmit and detect both longitudinal and shear waves simultaneously.

  • PDF

PZT Sensor-based Structural Health Monitoring for CFRP Laminated Concrete Structures (CFRP 보강 콘크리트 구조물의 PZT센서 기반 구조 건전성 모니터링)

  • Ryu, Sung-Chan;Kim, Ju-Won;Lee, Chang-Gil;Park, Seung-Hee;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.72-78
    • /
    • 2010
  • A CFRP (Carbon Fiber-Reinforced Plastic) strengthening method is being very widely used to increase the load-carrying capacity of host structures, especially for bridges. However, not only flexure and shear failures but debonding failure also might occur in CFRP strengthened concrete structures. The CFRP debonding failure would cause a collapse accident of the host structure. Therefore, real-time health monitoring about the CFRP bonding condition is strongly required. In this study, a feasibility of the impedance-based damage detection method using PZT sensors is investigated through a series of experimental study monitoring both concrete cracks and CFRP debonding defects.

Design of Diaphragm for Ultra High Pressure Sensors and Its performance Evaluation Using a PZT Actuated Deformation Tester (초고압 압력센서용 다이어프램 설계 및 PZT 구동 변형시험기를 이용한 성능평가)

  • Yun, Dae Jhoong;Ahn, Jung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • This research aims at designing a diaphragm made of SUS316L stainless steel for ultra high pressure sensors and evaluating its performance with a PZT driven deformation tester instead of high pressure chamber testing up to 100 MPa. Finite element method analysis indicates that the optimum thickness of a flat diaphragm is 1.5 mm not only to secure safety of sensors up to 100 MPa but also to enhance displacement measuring sensitivity. For this thickness, the maximum displacement at the center of the diaphragm is $5.3{\mu}m$. The PZT actuator must offer a force of 1,669 N to create a pressure of 100 MPa at the diaphragm surface in order to obtain a displacement of $5.3{\mu}m$. The performance evaluation by the PZT driven tester demonstrates nearly the same results as the same results as the sensors tested in the ultra high pressure chamber.

Experimental Investigation on Admittance-Based Piezoelectric Sensor Diagnostic Process (Admittance 기반 압전체 센서 자가진단절차의 영향인자 파악 및 실험적 고찰)

  • Jo, HyeJin;Park, Tong-Il;Park, Gyuhae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Structural health monitoring (SHM) techniques based on the use of active-sensing piezoelectric (PZT) materials have received considerable attention. The validation of the PZT functionality during SHM operation is critical to successfully implementing a reliable SHM system. In this study, we investigated several parameters that affect the admittance-based sensor diagnostic process. We experimentally identified the temperature dependency of the active-sensor diagnostic process. We found that the admittance-based sensor diagnostic process can differentiate the adhesion conditions of bonding materials that are used to install a PZT on a structure, which is important when designing a sensor diagnostic process for an SHM system.

Investigation on PVDE & PZT Sensor Signals for the Low-Velocity Impact Damage of Gr/Ep Composite Laminates (복합적층판의 저속충격손상에 따른 PZT 센서와 PVDF 센서의 신호 분석)

  • 이홍영;김진원;최정민;김인걸
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.125-128
    • /
    • 2003
  • Low-velocity impact damage is a major concern in the design of structures made of composite materials, because impact damage is hidden inside and cannot be detected by visual inspection. The piezoelectric thin film sensor can be used to detect variations in structural and material properties for structural health monitoring. In this paper, the PVDF and PZT sensors were used for monitoring impact damage initiation in Gr/Ep composite panel to illustrate this potential benefit. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The wavelet transform(WT) is used to decompose the piezoelectric sensor signals in this study. Test results show that the particular waveform of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. And it is found that both PZT and PVDF sensors can be used to detect the impact damage.

  • PDF