• Title/Summary/Keyword: PWR(Pressurized Water Reactor)

Search Result 231, Processing Time 0.02 seconds

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor

  • Min, Ki-Deuk;Hong, Seokmin;Kim, Dae-Whan;Lee, Bong-Sang;Kim, Seon-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.752-759
    • /
    • 2017
  • The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.

Development of supporting platform for the fine flow characteristics of reactor core

  • Hao Qian;Guangliang Chen;Lei Li;Lixuan Zhang;Xinli Yin;Hanqi Zhang;Shaomin Su
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1687-1697
    • /
    • 2024
  • This study presents the Supporting platform for reactor fine flow characteristics calculation and analysis (Cilian platform), a user-friendly tool that supports the analysis and optimization of pressurized water reactor (PWR) cores with mixing vanes using computational fluid dynamics (CFD) computing. The Cilian platform allows for easy creation and optimization of PWR's main CFD calculation schemes and autonomously manages CFD calculation and analysis of PWR cores, reducing the need for human and computational resources. The platform's key features enable efficient simulation, rapid solution design, automatic calculation of core scheme options, and streamlined data extraction and processing techniques. The Cilian platform's capability to call external CFD software reduces the development time and cost while improving the accuracy and reliability of the results. In conclusion, the Cilian platform exemplifies an innovative solution for efficient computational fluid dynamics analysis of pressurized water reactor (PWR) cores. It holds great promise for driving advancements in nuclear power technology, enhancing the safety, efficiency, and cost-effectiveness of nuclear reactors. The platform adopts a modular design methodology, enabling the swift and accurate computation and analysis of diverse flow regions within core components. This design approach facilitates the seamless integration of multiple computational modules across various reactor types, providing a high degree of flexibility and reusability.

COMPARATIVE ANALYSIS OF STATION BLACKOUT ACCIDENT PROGRESSION IN TYPICAL PWR, BWR, AND PHWR

  • Park, Soo-Yong;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.311-322
    • /
    • 2012
  • Since the crisis at the Fukushima plants, severe accident progression during a station blackout accident in nuclear power plants is recognized as a very important area for accident management and emergency planning. The purpose of this study is to investigate the comparative characteristics of anticipated severe accident progression among the three typical types of nuclear reactors. A station blackout scenario, where all off-site power is lost and the diesel generators fail, is simulated as an initiating event of a severe accident sequence. In this study a comparative analysis was performed for typical pressurized water reactor (PWR), boiling water reactor (BWR), and pressurized heavy water reactor (PHWR). The study includes the summarization of design differences that would impact severe accident progressions, thermal hydraulic/severe accident phenomenological analysis during a station blackout initiated-severe accident; and an investigation of the core damage process, both within the reactor vessel before it fails and in the containment afterwards, and the resultant impact on the containment.

EELS and electron diffraction studies on possible bonaccordite crystals in pressurized water reactor fuel CRUD and in oxide films of alloy 600 material

  • Chen, Jiaxin;Lindberg, Fredrik;Wells, Daniel;Bengtsson, Bernt
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.668-674
    • /
    • 2017
  • Experimental verification of boron species in fuel CRUD (Chalk River Unidentified Deposit) would provide essential and important information about the root cause of CRUD-induced power shifts (CIPS). To date, only bonaccordite and elemental boron were reported to exist in fuel CRUD in CIPS-troubled pressurized water reactor (PWR) cores and lithium tetraborate to exist in simulated PWR fuel CRUD from some autoclave tests. We have reevaluated previous analysis of similar threadlike crystals along with examining some similar threadlike crystals from CRUD samples collected from a PWR cycle that had no indications of CIPS. These threadlike crystals have a typical [Ni]/[Fe] atomic ratio of ~2 and similar crystal morphology as the one (bonaccordite) reported previously. In addition to electron diffraction study, we have applied electron energy loss spectroscopy to determine boron content in such a crystal and found a good agreement with that of bonaccordite. Surprisingly, such crystals seem to appear also on corroded surfaces of Alloy 600 that was exposed to simulated PWR primary water with a dissolved hydrogen level of $5mL\;H_2/kg\;H_2O$, but absent when exposed under $75mL\;H_2/kg\;H_2O$ condition. It remains to be verified as to what extent and in which chemical environment this phase would be formed in PWR primary systems.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

소듐냉각고속로의 고유 계통 특성

  • Lee, Jae-Han
    • Journal of the KSME
    • /
    • v.51 no.12
    • /
    • pp.51-54
    • /
    • 2011
  • 이 글에서는 제4세대 원자로로 다시 부각되고 있는 소듐냉각고속로(SFR: Sodium-cooled Fast Reactor)의 활용성, 계통설계 구성 및 공학적 안전설비에 대하여 가압경수로(PWR: Pressurized Water Reactor)와의 차이점을 위주로 소개한다.

  • PDF