• Title/Summary/Keyword: PWM current controller

Search Result 354, Processing Time 0.026 seconds

Effects of the Irradiated Current Mode PWM Controller of DC/DC Power Converter (DC/DC 전력 컨버터의 전류모드 PWM 제어기의 방사선 영향)

  • Lho, Young-Hwan;Hwang, Eui-Sung;Lho, Kyeoung-Su;Phouphanonh, Phouphanonh;Khamphoungeun, Khamphoungeun;Han, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.685-692
    • /
    • 2011
  • DC/DC switching power converters produce DC output voltages from different DC input sources. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The current mode DC/DC converter is composed of a PWM (pulse width modulation) controller, a MOSFET, and inductor, etc. Pulse width modulation is applied to control and regulate the total output voltage. It is shown that the variation of threshold voltage at MOSFET and the offset voltage increase caused by radiation effects make the PWM pulse unstable. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by simulation program with integrated circuit emphasis (SPICE) and experiments.

  • PDF

A Current Controller with the Compensation of the Input Voltage Unbalance and Distortion for Three Phase PWM Rectifier (전원전압의 불평형 및 왜곡 보상기능을 갖는 3상 PWM 정류기의 전류제어기)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.594-601
    • /
    • 2011
  • In this paper, a new current controller with the compensation of an unbalance and distorted grid voltages has been proposed. Generally, in the three-phase power system, single phase or nonlinear loads can be connected with the 3 phase linear load simultaneously on the same point of common coupling. Therefore, The source voltage unbalance and distortion problem can be occurred. Under these unbalance and distorted grid voltage conditions, the input current of 3 phase PWM rectifiers also have unbalance and distortion. In this paper, a current controller with the simple Model Reference Adaptive System based unbalance and distorted voltages observer is proposed to get a sinusoidal input current. The performance of the proposed algorithm is verified through the simulation and the experiment.

High Performance Control of IPMSM using SV-PWM Method Based on HAI Controller (HAI 제어기반 SV PWM 방식을 이용하나 IPMSM의 고성능 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.33-40
    • /
    • 2009
  • This paper presents the high performance control of interior permanent magnet synchronous motor(IPMSM) using space vector(SV) PWM method based on hybrid artificial intelligent(HAI) controller. The HAI controller combines the advantages between adaptive fuzzy control and neural network The SV PWM method is applied to a speed control system of motor in the industry field until now and is feasible to improve harmonic rate of output current, switching frequency and response characteristics. This HAI controller is used instead of conventional PI controller in order to solve problems happening when calculating a reference voltage. The HAI controller improves speed performance by hybrid combination of reference model-based adaptive mechanism method, fuzzy control and neural network. This paper analyzes response characteristics of parameter variation, steady-state and transient-state using proposed HAI controller and this controller compares with conventional fuzzy neural network(FNN) and PI controller. Also, this paper proves validity of HAI controller.

A New Current Controlled PWM technique for NPC Inverter (NPC 인버터를 위한 새로운 전류제어 기법)

  • 이병송;김길동;변윤섭;한영재;박현주
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.63-69
    • /
    • 1998
  • A new current controlled PWM technique with NPC structure is proposed in this paper. A current controlled PWM technique with neutral-point-clamped pulse-width modulation inverter composed of main switching devices which operates as switch for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential is described. The proposed current controller has a first and second current band. The switching pattern will be made by the first current band. According to the second current band, the output state of the switching pattern is changed into positive and negative state. This inverter output contains less harmonic content and lower switching frequency than that of conventional current controlled PWM technique at the same current limit. Two inverters are compared analytically and the performance is investigated by the computer simulation.

  • PDF

Three-Phase Z-Source PWM Rectifier Based on the DC Voltage Fuzzy Control (직류전압 퍼지 제어 기반의 3상 Z-소스 PWM 정류기)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.466-476
    • /
    • 2013
  • This paper describes a fuzzy control method to control the output voltage of the three-phase Z-source PWM rectifier. A fuzzy control system is a control system based on fuzzy logic, and the fuzzy controller uses a single input fuzzy theory with its fuzzification. Analytical structure of the simplest fuzzy controller is derived through the triangular membership functions with its fuzzification. By setting the membership functions of the fuzzy rules, fuzzy control is achieved. The PI portion of the output DC voltage controller is controlled by fuzzy method. To confirm the validity of the proposed method, the simulation and experiment were performed, The simulation is performed with PSIM and MATLAB/SIMULINK. For the experiment, we used a DSP(TMS320F28335) controller to compute the reference value and generate the PWM pulses. For the transient state performance of the output DC voltage control of Z-source PWM rectifier, the PI controller and fuzzy controller were compared, also the conventional PWM rectifier and Z-source PWM rectifier were compared. From the results, the Z-source rectifier could allow to buck or boost of the output DC voltage. Through the analysis of the transient state, we could observe that the fuzzy controller has better performance than the conventional PI controller.

New Controller for Power Factor and Harmonics Compensation of Single-Phase PWM Converter without AC Voltage Sensor (단상 PWM 컨버터의 역률 및 고조파 보상을 위한 교류전압 검출기가 없는 새로운 제어기)

  • Jon, Y.S.;Baek, S.T.;Kim, H.J.;Han, B.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.161-165
    • /
    • 2003
  • In this paper, A new controller for power factor and harmonics compensation of a single-phase PWM converter is described. The proposed controller requires only the dc voltage sensor and the at current sensor to compensate the power factor and harmonics. Detail simulation model with EMTBC (Electro-Magnetic Transient program for DC transmission) including power circuit and controller was developed to verify the operation of proposed controller. The application feasibility of the proposed controller was verified through experimental works with a prototype. The proposed controller has a simple structure in the point of hardware implementation, and shows excellent performance in normal operation as well as in sudden load change.

  • PDF

A Simple Current Controller for Three-Phase PWM Inverters Using Three-Level Comparators (3레벨 비교기를 이용한 간단한 전류제어기)

  • Moon, Hyoung-Soo;Han, Woo-Yang;Lee, Chang-Goo;Sin, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.274-276
    • /
    • 2001
  • A simple current controller for three-phase PWM power inverters using 3-level comparator is presented. All voltage vectors are accurately selected in order to minimize the current error using two three-level comparators and ${\alpha}-{\beta}$ current reference frame. The proposed algorithm have fast response and low current errors. This current controller is improved synchronization problem and increased the voltage utilization value. Usefulness of propose method are verified on the simulation result using Matlab/Simulink.

  • PDF

A Novel Control Algorithm of a Three-phase PWM Inverter with LC Filter (정현파 출력 필터를 가지는 3상 PWM 인버터 제어 기법)

  • Kim, Kwang-Seob;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.239-246
    • /
    • 2015
  • A novel control method of a three-phase PWM inverter with LC filter is proposed. The transfer function of LC filter is the same as that of second-order low pass filter(LPF), which has a zero damping ratio. A simple method of implementing second-order LPF with damping ratio is to add a resistor in an LC circuit. However, in a real power system, adopting damping resistors is impractical because it results in losses proportional to the square of the current flowing through the resistors. Instead of inserting resistors, the proposed control strategy utilizes the measured capacitor voltages to control the oscillation of LC circuit. The overall transfer function of the proposed method is the same as a second-order LPF, and its damping ratio is controllable via control variables. The current controller can have overshoots caused by LC filter. Improved current controller is implemented by an equivalent second-order of LC filter. A 7.5 kVA PWM converter and a PWM inverter with a 5.5 kW induction motor are set up to verify the proposed control algorithm. Test waveforms are also presented to verify the proposed LC filter control algorithm.

A Harmonic Circulation Current Reduction Method for Parallel Operation of UPS with a Three-Phase PWM Inverter

  • Kim Kyung-Hwan;Kim Wook-Dong;Hyun Dong-Suk
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.160-165
    • /
    • 2005
  • In a parallel operation of UPS, there are two types of circulating currents between UPS. One is the low order circulating current with a fundamental frequency caused by the amplitude and phase differences of UPS output voltages, and the other is the harmonic circulating current with PWM switching frequency caused by non-synchronized PWM waveforms among UPS. The elimination of the low order circulating current is essential for optimal load sharing in parallel operations of UPS, which can be accomplished by the phase and magnitude control at each UPS. The harmonic circulating current may cause troubles and deteriorate in performance of the controller for optimal load sharing in parallel operation of UPS. This paper presents a PWM synchronizing method to eliminate the harmonic circulation current in parallel operation of UPS. The effectiveness of the proposed scheme has been investigated and verified through experiments by a 50kVA UPS.

Development of the Water Treatment System with High Performance Electromagnetic Field (고성능 전자장을 갖는 수처리 시스템의 개발)

  • Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • This paper presents the water treatment system with high performance electromagnetic field for a good quality of water. The electromagnetic field water treater consists of a solion, a solion body, and a high voltage converter. The high voltage converter is controlled by PWM current controller. The high voltage converter of 13W is designed for an isolation operation amp, an isolation current detector, and an over current protector. Using the high voltage PWM converter, the system with the proposed electromagnetic field water treater can be controlled easily. Simulation and experimental results show the effectiveness of the system strategy proposed for the scale rejection.