• Title/Summary/Keyword: PWM AC-AC Boost Converter

Search Result 79, Processing Time 0.022 seconds

A Study on 6-pulse-shift Current-source PWM Inverter for Photovoltaic System (태양광발전을 위한 6-pulse-shift 전류형 인버터에 관한 연구)

  • Lim, Joung-Min;Lee, Sang-Hun;Park, Sung-Jun;Moon, Chae-Joo;Chang, Young-Hak;Lee, Man-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2006
  • This paper suggests a 6-pulse-shift converter structure with PWM current-source inverter based on buck-boost configuration to improve the efficiency and to reduce the switching frequency of inverter for photovoltaic generation system, the device can be operated as interface system between solar module system and power system grid without energy storage cell. The circuit has six current-source buck-boost converter which operate chopper part and kas one full bridge inverter which make a decision the polarity of AC output. Therefore, the proposed PWM power inverter has advantages such as the reduction of witching loss and realization of unity power factor operation. The theoretical backgrounds are discussed and the input-output characteristics for the implemented prototype inverter using TMS320F2812 are verified experimentally in this paper.

A New Z-Source Inverter Topology with High Voltage Boost Ability

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.714-723
    • /
    • 2012
  • A new Z-source inverter (ZSI) topology is developed to improve voltage boost ability. The proposed topology is modified from the switched inductor topology by adding some more inductors and diodes into inductor branch to the conventional Z-source network. The modulation methods developed for the conventional ZSI can be easily utilized in the proposed ZSI. The proposed ZSI has an ability to obtain a higher voltage boost ratio compared with the conventional ZSI under the same shoot-through duty ratio. Since a smaller shoot-through duty ratio is required for high voltage boost, the proposed ZSI is able to reduce the voltage stress on Z-source capacitor and inverter-bridge. Theoretical analysis and operating principle of the proposed topology are explicitly described. In addition, the design guideline of the proposed Z-source network as well as the PWM control method to achieve the desired voltage boost factor is also analyzed in detail. The improved performances are validated by both simulation and experiment.

A New PWM Strategy for reducing Common Mode Voltage in PWM boost Converter/lnverter Fed ac Motor Drives. (PWM 승압형 컨버터/인버터를 시스템에서 커먼 모드 전압 저감을 위한 새로운 PWM 기법)

  • Lee, Hyeoun-Dong;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2484-2486
    • /
    • 1999
  • 본 논문에서는 PWM 승압형 컨버터/인버터를 사용한 교류전동기 구동시스템에서 커먼 모드 전압의 크기를 dc 버스 전압 1/3이하로 제한시키는 새로운 공간전압벡터 PWM 기법을 제안한다. Dc 버스 전압의 2/3에 해당하는 커먼 모드 전압 펄스가 발생하는 경우에 대하여 고찰하고 각각의 경우에 대한 인버터 스위칭 시점의 이동을 통한 제거 방법을 제안한다. 제안된 방법은 부가의 하드웨어를 요구하지 않고 소프트웨어적으로 손쉽게 구현될 수 있으며, 전력변환기의 제어성능에 영향을 미치지 않는다는 장점을 가진다.

  • PDF

Boost Converter Embedded Battery Charging Function for Application of E-bike (전기자전거 응용을 위한 배터리 충전 기능 내장형 부스트 컨버터)

  • Kim, Da-Som;Kim, Sang-Yeon;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2016
  • In the conventional E-bike, a 42 V/10 A Li-ion battery drives a 24 V/10 A BLDC motor via a 6-switch PWM DC/AC inverter. The major problems of the conventional battery-fed motor drive systems are listed as follows. To charge the battery, an external battery charger (adapter) is required, which degrades the portability of E-bike users. In addition, given the high-frequency operation of the motor drive inverter, the switching losses are significant, which degrades the whole power efficiency. High-voltage batteries (42 V) require a complex battery management system (BMS), which degrades the reliability of the battery pack. In this paper, an embedded boost-converter battery charger for E-bikes is proposed. The variable output boost converter, which converts 16.8 V battery voltage to the required variable voltage of the inverter input, can use a low-voltage battery and thus improve the reliability of batteries. By varying the inverter input voltage via boost converter, a DC link voltage control method can be applied to reduce the switching frequency of the inverter, which improves the whole power efficiency. Given that the function of a flyback charger is integrated in the proposed boost converter, the portability of the E-bike user can be maximized by excluding an external adapter. The validity of the proposed circuit will be confirmed by operation mode analysis and simulation. Moreover, experimental results of integrative charger using Li-ion battery and 200 W motor test will be showed with a prototype sample as well.

A Feasibility Design of PEMFC Parallel Operation for a Fuel Cell Generation System

  • Kang, Hyun-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.408-421
    • /
    • 2008
  • In this paper, the parallel operation for a FC generation system is introduced and designed in order to increase the capacity for the distributed generation of a proton exchange membrane fuel cell (PEMFC) system. The equipment is the type that is used by parallel operated PEMFC generation systems which have two PEMFC systems, two dc/dc boost converters with shared dc link, and a grid-connected dc/ac inverter for embedded generation. The system requirement for the purpose of parallel operated generation using PEMFC system is also described. Aspects related to the mechanical (MBOP) and electrical (EBOP) component, size, and system complexity of the distributed generation system, it is explained in order to design an optimal distributed generation system using PEMFC. The optimal controller design for the parallel operation of the converter is suggested and informative simulations and experimental results are provided.

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

The Improvement Techniques of Characteristics using DSP Chip in Switching Power Converter System (DSP칩을 이용한 스위칭 전력변환 시스템의 특성 개선 기법)

  • Kang Min-Su;Kim Sang-Ug;Im Dong-Gi;Kang Ho-Hyun;Jeon Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.670-672
    • /
    • 2004
  • In this paper, single phase boost converter with low current harmonic components and high power factor are proposed. A single-phase half-bridge rectifier based on a neutral point switch clamped scheme is proposed to draw a nearly unity power factor and regulate the DC link voltage. Three power switches are employed in the proposed rectifier. This rectifier is controlled to generate a bipolar or unipolar PWM voltage waveform on the AC side. The proposed converter is implemented by a digital signal processor.

  • PDF

Development of 3.0[kW] class Fuel Cell Power Conversion System(I) (3[kW]급 연료전지용 전력변환장치(I)의 개발)

  • Mun, S.P.;Kwon, S.K.;Suh, K.Y.;Kim, Y.M.;Ryu, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1207-1208
    • /
    • 2006
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%] is obtained over the wide output voltage regulation ranges and load variations.

  • PDF

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.