• Title/Summary/Keyword: PVX

Search Result 38, Processing Time 0.033 seconds

Serological Identification of Potato Viruses in Korea (감자 바이러스의 혈청학적 동정에 관한 연구)

  • La Yong-Joon
    • Korean journal of applied entomology
    • /
    • v.13 no.1 s.18
    • /
    • pp.41-45
    • /
    • 1974
  • A total of 230 apparently healthy looking potato stocks and 80 potato stocks with symptoms of virus infection were collected from various seed potato farms in Korea and the incidence of potato virus X (PVX), potato virus S (PVS), potato virus M (PVM) and potato virus Y (PVY) was determined by serological microprecipitin tests. Results obtained are as follows. 1. Serological microprecipitin test retreated the presence of PVX, PVS, PVM and PVY in a number of potato stocks grown for the production of seed potatoes in Korea. 2. The occurrence of potato virus M is reported here for the first time in Korea with experimental evidence. 3. Practically $100\%$ (290 stocks, of the apparently healthy looking potato stocks were demonstrated to be infected with both PVX and PVS. The infection percentages of potato stocks with combination of PVX, PVS, PVM and PVY were as follows. PVX+PVS+PVM:$10.3\%$, PVX+PVS+PVY:$4.5\%$, PVX+PVS+PVM+PVY:$1.03\%$ 4. Irish Cobbler and Shimabara, which are the two major potato varieties in Korea, appear to be symptomless carriers of PVX and PVS. However, when these varieties were infected additionally with PVY, usually severe symptoms resulted. 5. Serological microprecipitin technique appears to be highly suitable for early, quick and reliable diagnosis of PVX, PVS PVM and PVY. It is particularly suited for large scale testing of seed potato stocks for the presence of viruses mentioned above.

  • PDF

Agroinfiltration-based Potato Virus X Replicons to Dissect the Requirements of Viral Infection

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Extensive research of the Potato virus X(PVX) has been performed in in vitro transcription system using the bacteriophage T7 promoter. We constructed an efficient T-DNA based binary vector, pSNU1, and modified vectors carrying PVX replicons. The suitability of the construct to transiently express PVX RNA using Agrobacterium tumefaciens was tested by analysis of infectivity in plants. The expressed PVX RNA was infectous and systemically spread in three plant species including Nicotiana benthamiana, N. tabacum cv. Xanthi-nc, and Capsicum annuum cv. Chilsungcho. The PVX full length construct, pSPVXp31, was caused severe mosaic symptoms on N. benthamiana, severe necrotic lesions on C. annuum while milder symptoms and delayed mosaic symptoms were appeared on the systemic leaves on N. tabaccum. RT-PCR analysis confirmed the presence of PVX RNAs on both inoculated and systemic leaves in all three plant species tested. Our results indicated that PVX replicons were efficiently expressed PVX RNA in at least three tested species. Further investigation win be needed to elucidate the mechanism of PVX replication, translation, movement and assembly/disassembly processes.

Identification of the Capsid Protein-binding Region of the SL1(+) RNA Located at the 5' Region of the Potato virus X Genome

  • Cho, Sang-Yun;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) contains $cis$-acting elements including stem-loop 1 (SL1) RNA at the 5' region; SL1 is conserved among all potexviruses. The SL1 at the positive-sense RNA, SL1(+), is required for PVX RNA replication, cell-to-cell movement, and translation. Previous research demonstrated that SL1(+) RNA also serves as the origin of assembly for encapsidation of PVX RNA. To identify the essential sequences and/or regions for capsid protein (CP) subunit recognition within SL1(+) RNA, we used electrophoretic mobility shift assays (EMSA), UV cross-linking, and yeast three-hybrid analyses. The EMSA and UV cross-linking analyses with PVX CP subunits and RNA transcripts corresponding to the SL1(+) RNA showed that the SL1(+) RNA formed complexes with CP subunits. We also conducted EMSA and yeast three-hybrid analyses with RNAs containing various mutations of SL1(+) RNA elements. These analyses indicated that SL1(+) RNA is required for the interaction with PVX CP and that the RNA sequences located at the loop C and tetra loop of the SL1(+) are crucial for CP binding. These results indicate that, in addition to being important for RNA accumulation, the SL1(+) RNA from the 5' region of the PVX genome is also required for specific binding of PVX CP.

Characterization and Partial Nucleotide Sequence of Potato Virus X Isolated from Potato in Korea

  • Jung, Hyo-Won;Yun, Wan-Soo;Seo, Hyo-Won;Hahm, Young-Il;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.110-117
    • /
    • 2000
  • Potato virus X (PVX-KO) showing mild mosaic and stunting symptoms on potato (Solanum tuberosum) in Kangwon area has been isolated and characterized. EM observation of the purified virus particles showed flexuous rod shape of about 520 nm in length. The coat protein (CP) of the virus had a molecular weight of 31 kDa in SDS-PAGE analysis, and the viral RNA was approximately 6.4 kb in size in denatured agarose gel electro-phoresis. In gel-immunodiffusion tests, it reacted strongly with an antiserum to common PVX from BIOREABAAG (USA). A rabbit antiserum was produced using purified virus and used for routine PVX detection by ELISA. Cultivated potatoes in Kangwon and other areas were frequently infected with PVX-KO. Both Datura stramonium and Nicotiana tabaccum cultivars developed necrotic local lesions 5 days after inoculation, and systemic mosaic symptoms with vein clearing 2 weeks after inoculation. All the features agree with the description of other PVX strains. To confirm and determine PVX strains, reverse transcription-polymerase chain reaction experiment was conducted using specific primers for viral CP. Amplified DNA fragments were cloned and sequenced. Results showed nucleotide sequence homologies of about 88 to 99% to other PVX strains. Based on CP amino acid sequence deduced from nucleotide sequences and host range studies PVX-KO is considered a member of the type X subgroup of PVX.

  • PDF

Studies on Purification and Serology of Potato Virus X (감자바이러스 X의 순화와 혈청학적 연구)

  • Lee Soon Hyung;Lee Key Woon;Chung Bong Jo
    • Korean journal of applied entomology
    • /
    • v.16 no.2 s.31
    • /
    • pp.101-104
    • /
    • 1977
  • Potato virus X was purified especially for the preparation of antisera for diagnosis and identification. Potato virus X was isolated Iron infected plants by means of indicator plants and identified in electron microscopy. Isolated PVX was multiplied in tomato plants and purified by a modified procedures. The purity of PVX was 0.59mg/m1. Purified PVX was injected into rabbits once a week for 5 weeks. Antiserum was collected 10 days after the last injection. Produced antiserum was determined 1/1024 titers by means of microprecipitin tests and showed sharp reactions in agar gel-diffusion tests.

  • PDF

Determination of Complete Genome Sequence of Korean Isolate of Potato virus X

  • Choi, Sun-Hee;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.361-364
    • /
    • 2008
  • The complete nucleotide sequences of a Korean isolate of Potato virus X(PVX-Kr) has been determined. Full-length cDNA of PVX-Kr has been directly amplified by long template reverse transcription and polymerase chain reaction(RT-PCR) using virus specific 5'-end primer and 3'-end primer, and then constructed in a plasmid vector. Consecutive subclones of a full-length cDNA clone were constructed to identify whole genome sequence of the virus. Total nucleotide sequences of genome of PVX-Kr were 6,435 excluding one adenine at poly A tail, and genome organization was identical with that of typical PVX species. Comparison of whole genome sequence of PVX-Kr with those of European and South American isolates showed 95.4-96.8% and 77.4-77.9%, in nucleotide similarity, respectively. Sequenced PVX-Kr in this study and twelve isolates already reported could be divided into two subgroups in phylogeny based on their complete nucleotide sequences. Phylogenetic tree analysis demonstrated that PVX-Kr was clustered with European and Asian isolates(Taiwan, os, bs, Kr, S, X3, UK3, ROTH1, Tula) in the same subgroup and South American isolates(CP, CP2, CP4, HB) were clustered in the other subgroup.

Plant RNA Virus-Host Interaction: Potato virus X as a model system

  • Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.14-14
    • /
    • 2003
  • Potato virus X (PVX), the type member of Potexvirus genus, is a flexuous rod-shaped virus containing a single-stranded (+) RNA. Infection by PVX produces genomic plus- and minus-strand RNAs and two major subgenomic RNAs (sgRNAs). To understand the mechanism for PVX replication, we are studying the cis- and/or trans-acting elements required for RNA replication. Previous studies have shown that the conserved sequences located upstream of two major sgRNAs, as well as elements in the 5' non-translated region (NTR) affect accumulation of genomic and sg RNAs. Complementarity between sequences at the 5' NTR and those located upstream of two major sgRNAs and the binding of host protein(s) to the 5' NTR have shown to be important for PVX RNA replication. The 5 NTR of PVX contains single-stranded AC-rich sequence and stem-loop structure. The potential role(s) of these cis-elements on virus replication, assembly, and their interaction with viral and host protein(s) during virus infection will be discussed based on the data obtained by in vitro binding, in vitro assembly, gel shift mobility assay, host gene expression profiling using various mutants at these regions.

  • PDF

Study on Inheritance of Potato virus X Resistance in Capsicum annuum

  • Shi, Jinxia;Choi, Do-Il;Kim, Byung-Dong;Kang, Byoung-Cheorl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.433-438
    • /
    • 2008
  • Potato virus X (PVX) resistance in potato is one of the best-characterized resistance models, however little is known in pepper. To evaluate the resistance to PVX in Capsicum annuum, a total of eleven pepper accessions were used for resistance screening against two PVX strains, USA and UK3. None of them were resistant against strain UK3, whereas four resistant genotypes were found against strain USA, three of which were further characterized. Two unlinked dominant genes were identified for both genotypes Bukang and Perennial; resistance in the genotype CV3 seemed to be conferred by two complementary dominant genes. These results demonstrated that the resistance to PVX in C. annuum is different from that in potato. This is the first report on genetic analysis of PVX resistance in C. annuum.

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.