• 제목/요약/키워드: PVA film

검색결과 144건 처리시간 0.026초

Novel polyvinyl alcohol film dosimeter containing 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye for high dose application

  • Khalid A. Rabaeh;Ahmed A. Basfar;Issra' M.E. Hammoudeh
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3383-3387
    • /
    • 2023
  • A new dyed polyvinyl alcohol (PVA) film dosimeter based on 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MMT) tetrazolium dye is proposed in this study for measuring high gamma radiation dose. Gamma cell irradiator that contains Co-60 gamma-ray source was used to expose the novel MMT-PVA films to different doses up to 25 kGy. The changed in optical property of irradiated and unirradiated films were characterized by UV-Vis spectrophotometer. The results show that the dose sensitive and the linear range of irradiated films were increased considerably with increase of MMT concentration from 1 to 5 mM. The dose response of dyed PVA film changed substantially with changing relative humidity (12-74%) as well as irradiation temperature (10-40 ℃). The absorbance of the unirradiated films does not change up to 10 days in dark while a significant increase in their absorbance was reported for similar films under fluorescent light. The irradiated dosimeters that kept in dark showed a perfect stability for 54 days. It was found that no obvious impact of dose rate on the irradiated MMT-PVA film dosimeters.

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

수용성 폴리비닐알콜(PVA) 포장소재의 이용 (Review on PVA as a Water Soluble Packaging Material)

  • 이지윤;장시훈;박수일
    • 한국포장학회지
    • /
    • 제15권1호
    • /
    • pp.25-32
    • /
    • 2009
  • It is now widely recognized that the disposal of packaging waste is an increasing environmental concern. Recent interest in polymer waste management of packaging materials has added incentive to the research. Poly(vinyl alcohol) is a readily biodegradable water-soluble polymer. However, this polymer cannot be processed by conventional extrusion technologies because the melting point of PVA is close to its decomposition temperature. Therefore, PVA films have been mostly prepared by solvent casting from water. Applications of PVA include sizing, binders, fibers, and films for agricultural chemicals and hospital laundry bags. A better understanding of PVA films, which also play important roles in the degradation of plastics, will expand the usage of PVA. Composite films based on PVA generally exhibit better mechanical and thermal properties than pure PVA. The aim of this review article is to review types, formation, and properties of PVA films and PVA based composite films used in packaging related researches.

  • PDF

Transport Properties of Crosslinked Poly Vinyl Alcohol Membrane in Pervaporation

  • Lee, Chul-Haeng;Hong, Won-Hi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1996년도 추계 총회 및 학술발표회
    • /
    • pp.92-93
    • /
    • 1996
  • PVA membrane was widely used in the dehydration pervaporation process. PVA membrane showed remakable selectivity towed water and an excellent film-forming polymer, with a good resistance to orgamic solvents but it has poor stability in aqueous mixtures. Generally the PVA is manufactured by the hydrolysis reaction from poly vinyl acetate(PVAc) and so the degree of PVA hydrolysis is a major parameter for properties of PVA membrane such as the crystallinity and polarity.

  • PDF

Passivation Layers for Organic Thin-film-transistors

  • Lee, Ho-Nyeon;Lee, Young-Gu;Ko, Ik-Hwan;Kang, Sung-Kee;Lee, Seong-Eui;Oh, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권1호
    • /
    • pp.36-40
    • /
    • 2007
  • Inorganic layers, such as SiOxNy and SiOx deposited using plasma sublimation method, were tested as passivation layer for organic thin-film-transistors (OTFTs). OTFTs with bottom-gate and bottom-contact structure were fabricated using pentacene as organic semiconductor and an organic gate insulator. SiOxNy layer gave little change in characteristics of OTFTs, but SiOx layer degraded the performance of OTFTs severely. Inferior barrier properties related to its lower film density, higher water vapor transmission rate (WVTR) and damage due to process environment of oxygen of SiOx film could explain these results. Polyurea and polyvinyl acetates (PVA) were tested as organic passivation layers also. PVA showed good properties as a buffer layer to reduce the damage come from the vacuum deposition process of upper passivation layers. From these results, a multilayer structure with upper SiOxNy film and lower PVA film is expected to be a superior passivation layer for OTFTs.

PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상 (Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA)

  • 박민의;신채연;김혜지;김승연;최영주;정대원
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.734-739
    • /
    • 2018
  • PVA를 PEDOT : PSS에 첨가해줌으로써 CVD 그래핀 상에 효과적으로 코팅할 수 있었다. PVA의 검화도 및 분자량에 따른 코팅성 및 필름의 전기적 특성을 검토한 결과, DS는 89%, 분자량은 $100,000gmol^{-1}$ 이하인 것이 바람직하였다. 또한, PVA의 첨가량은 PEDOT : PSS의 고형분 대비 5%가 최적으로 나타났다. 이와 같은 PVA를 사용하여 PEDOT : PSS를 CVD 그래핀 위에 코팅한 필름은 CVD 그래핀 필름에 비해서 표면조도, 부착성, 굴곡 내구성 및 고온($160^{\circ}C$)에서의 저항 안정성 등이 현저하게 개선되는 것으로 나타났다.

Sensing characteristics of Polypyrrole-based methanol sensors preparedbyin-situ vapor state polymerization

  • Linshu Jiang;Jun, Hee-Kwon;Hoh, Yong-Su;Lee, Duk-Dong;Huh, Jeung-Soo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.137-137
    • /
    • 2003
  • Conducting PPy/PVA composite and pure PPy gas sensors were prepared by in-situ vaporstate polymerization method in a vaporization chamber under N2 condition, by exposing the pre-coated electrode with PVA/FeC13 to distilled pyrrole monomer. The various electrical sensing behaviors of both types of sensors were systematically investigated by a flow measuring system including mass flow controller (MFC) and bubbling bottle. The FT-Raman spectroscopy of vapor state polymerized PPy was identical to that of chemically polymerized PPy, confirming the same chemical structure. Both types of sensors had positive sensitivity when exposed to methanol gas. The sensitivity varied linearly with gas concentration in the range of 50ppm to 1059ppm. The detection limit of PPy/PVA sensor was believed to be as low as 10ppm. The sensitivity of PPy/PVA composite sensor was higher than that of pure PPy sensor. Both the response time and recovery time of PPy/PVA composite sensors were longer than those of pure PPy sensors. The thickness of the sensing film affected the sensitivity this way that the sensor having thinner film had higher sensitivity, indicating that the resistance of polymer film involved in the sensing behavior was bulk resistance rather than surface resistance. The reproducibility of PPy/PVA composite sensor was excellent during eight on-off cycles by switching between N2 and 3000ppm methanol gas. The sensitivity of PPy/PVA composite sensor was only maintained for two weeks, while the sensitivity of pure PPy sensor was maintained over two months.

  • PDF

Polyvinyl Alcohol (PVA) Films Reinforced with Acid Hydrolyzed Cellulose

  • Lee, Sun-Young;Mohan, D.Jagan;Chun, Sang-Jin;Kang, In-Aeh;Lee, Soo
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.341-346
    • /
    • 2008
  • Cellulose nanofibers from microfibril cellulose (MFC) was prepared by hydrobromic acid (HBr) treatment at different concentrations. Polyvinyl alcohol (PVA) composite films at various loading level of nanofibers were manufactured by a film casting method. The analysis of degree of polymerization (DP), crystallinity ($X_c$) and molecular weight ($M_w$) of cellulose after acid treatment was conducted. The mechanical and thermal properties of the cellulose nanofibers reinforced PVA films were characterized using tensile tests and thermogravimetric analysis (TGA). The DP and $M_w$ of MFC by HBr hydrolysis considerably decreased, but $X_c$ showed no significant change. After acid hydrolysis, the diameter of cellulose nanofibers was in the range of 100 to 200 nm. The thermal stability of the films was steadily improved with the increase of nanofiber loading. There was a significant increase in the tensile strength of PVA composite films with the increase in MFC loading. Finally, 5 wt.% nanofiber loading exhibited the highest tensile strength and thermal stability of PVA composite films.

폴리비닐알콜/수분산 에틸렌-아크릴산 공중합체 블렌딩 필름의 내수성 및 수분/산소 차단성 연구 (The Study of Water Resistance and Water/Oxygen Barrier Properties of Poly(vinyl alcohol)/Water-soluble Poly(ethylene-co-acrylic acid) Blend Films)

  • 김은지;박재형;백인규
    • 공업화학
    • /
    • 제23권2호
    • /
    • pp.217-221
    • /
    • 2012
  • 에틸렌-아크릴산 공중합체(EAA)를 물에 분산시킨 후, 폴리(비닐 알코올) (PVA) 수용액과 블렌딩하여 내수성 및 차단성이 향상된 필름을 제조하였다. EAA의 함량에 따라 제조된 필름으로 열적-기계적 성질, 접촉각, 수분 투과율, 산소 투과율을 측정하였고 내수성에 대한 평가 실험도 진행하였다. 필름의 인장강도는 $9.16{\sim}11.75\;kg/mm^2$으로 PVA와 큰 차이가 없었으며, 경도의 경우는 EAA 함량에 따라 값이 점점 증가하였다. 유리전이 온도와 용융 온도는 약간 향상되었다. PVA/EAA의 비율이 90/10인 블렌딩 필름의 경우 Swelling 109%, Solubility 0%로 측정되어 PVA에 비하여 내수성이 개선되었음을 확인할 수 있었다. 또한, PVA/EAA의 비율이 90/10인 블렌딩 필름(두께 $2.5\;{\mu}m$)을 PET 필름(두께 $50\;{\mu}m$) 위에 코팅하여 제조된 필름의 수분투과율과 산소 투과율은 각각 $9.1\;g/m^2/day$$2.0\;cc/m^2/day$으로 측정되었다.