• Title/Summary/Keyword: PV-ESS system

Search Result 69, Processing Time 0.028 seconds

A Study of Optimum Capacity of Battery Energy Storage System Linked PV (태양광 연계형 배터리 에너지 저장장치의 최적 용량 산정)

  • Baek, Min-Kyu;Park, Jong-Bae;Son, Sung-Yong;Shin, Ha-Sang;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.38-45
    • /
    • 2018
  • In September 2016, the government decided to apply a REC 5.0 weighting to solar-battery ESS to increase the supply of renewable energy. In this paper, we calculated the optimal capacity of battery ESS which maximizes the revenue when solar is linked with battery ESS. In the case study, the optimal capacity was calculated by applying the conservative REC price, and we studied sensitivity analysis about battery price and real-time REC price.

On-line Optimal EMS Implementation for Distributed Power System

  • Choi, Wooin;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.33-34
    • /
    • 2012
  • As the distributed power system with PV and ESS is highlighted to be one of the most prominent structure to replace the traditional electric power system, power flow scheduling is expected to bring better system efficiency. Optimal energy management system (EMS) where the power from PV and the grid is managed in time-domain using ESS needs an optimization process. In this paper, main optimization method is implemented using dynamic programming (DP). To overcome the drawback of DP in which ideal future information is required, prediction stage precedes every EMS execution. A simple auto-regressive moving-average (ARMA) forecasting followed by a PI-controller updates the prediction data. Assessment of the on-line optimal EMS scheme has been evaluated on several cases.

  • PDF

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

Economy Analysis and Optimized Capacity Evaluation of Photovoltaic-Related Energy Storage System (태양광 에너지저장장치(ESS) 경제성 분석 및 최적 용량 평가)

  • Lee, Young-Hun;Sung, Tae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.209-218
    • /
    • 2022
  • The purpose of this study is to analyze an economic assessment of PV-ESS systems based on the power generation performance data of solar power (PV) operating in domestic area, and to calculate the optimal capacity of the energy storage system. In this study, PVs in Gyeonggi-do, Jeollabuk-do, and Gyeongsangbuk-do were targeted, and PVs in this area were assumed to be installed on a general site, and the research was conducted by applying weights based on the facility's capacity. All the analysis was conducted using the actual amount of KPX transactions of PVs in 2019. In order to calculate the optimal capacity of PCS and BESS according to GHI, PV with a minimum/maximum/central value was selected by comparing the solar radiation before the horizontal plane between three years (2017-2019) of the location where PV was installed. As a result of the analysis, in Gyeonggi-do, if the REC weight decreases to 3.4 when there is no change in the cost of installing BESS and PCS, it is more economical to link BESS than PV alone operation of PV. In Jeollabuk-do, it was analyzed that if the REC weight was reduced to 3.6, it was more likely to link BESS than PV operated alone. In Gyeongsangbuk-do, it was analyzed that if the REC weight was reduced to 3.4, it was more likely to link BESS than PV operated alone.

Calculation of Photovoltaic, ESS Optimal Capacity and Its Economic Effect Analysis by Considering University Building Power Consumption (대학건물의 전력소비패턴 분석을 통한 태양광, ESS 적정용량 산정 및 경제적 효과 분석)

  • Lee, Hye-Jin;Choi, Jeong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.207-217
    • /
    • 2018
  • Recently, the importance of energy demand management, particularly peak load control, has been increasing due to the policy changes of the Second Energy Basic Plan. Even though the installation of distributed generation systems such as Photovoltaic and energy storage systems (ESS) are encouraged, high initial installation costs make it difficult to expand their supply. In this study, the power consumption of a university building was measured in real time and the measured power consumption data was used to calculate the optimal installation capacity of the Photovoltaic and ESS, respectively. In order to calculate the optimal capacity, it is necessary to analyze the operation methods of the Photovoltaic and ESS while considering the KEPCO electricity billing system, power consumption patterns of the building, installation costs of the Photovoltaic and ESS, estimated savings on electric charges, and life time. In this study, the power consumption of the university building with a daily power consumption of approximately 200kWh and a peak power of approximately 20kW was measured per minute. An economic analysis conducted using these measured data showed that the optimal capacity was approximately 30kW for Photovoltaic and approximately 7kWh for ESS.

A Study on the Optimization of Power Consumption Pattern using Building Smart Microgrid Test-Bed (Building Smart Microgrid Test-Bed를 이용한 전력사용량 패턴 최적화방안 연구)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • The microgrid system is the combination of photovoltaic(PV) array, load, and battery energy storage system. The control strategies were defined as multi-modes of operation, including rest operation without use of battery, power charging, and power discharging, which enables grid connected mode or islanded mode. Photovoltaic power is a problem of the uniformity of power quality because the power generated from solar light is very sensitive to variation of insolation and duration of sunshine. As a solution to the above problem, energy storage system(ESS) is considered generally. There fore, in this study, we did basic research activities about optimization method of the amount of energy used, using a smart microgrid test-bed constructed in building. First, we analyzed the daily, monthly and period energy pattern amount of power energy used, and analyzed PV power generation level which is built on the roof. Utilizing building energy pattern analysis data, we was studied an efficient method of employing the ESS about building power consumption pattern and PV generation.

Control Strategy for Hybrid Module with Energy Storage for Island Mode (에너지 저장 장치를 갖는 태양광 하이브리드 모듈의 제어 전략)

  • Choi, Bong-Yeon;Jang, Jin-Woo;Lee, Soon-Ryung;Kim, Young-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.477-478
    • /
    • 2013
  • This paper presents the control mehtod of a photovoltaic(PV) hybrid generation with energy storage system(ESS). To stabilize power control between PV generation system with ESS and local load, the proposed control method performs grid-connected and islanding operations. Through the simulation results the theoretical analysis of proposed method is verified.

  • PDF

A Case Study on Operation of Energy Management System Connected with Renewable Energy (신재생에너지 연계형 에너지관리장치의 운영 사례 연구)

  • Cho, Jai Young;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.71-77
    • /
    • 2018
  • This paper proposes the components of the energy management system (EMS) for optimum operation of renewable energy and associated energy storage system (ESS), the functions to be considered in designing, the analysis of operational effects, and finally the reduction of electricity costs. To accomplish the objectives, a lithium-ion battery system and an energy management system have installed in a PV system, and it presents the results analyzed with operation data for a year. To increase the system operation efficiency, we propose the effect that EMS is used to replace the demand power at the peak time with the charge power at the light load time, which suggests the influence of contributing to the charge benefit and load leveling according to the ESS tariff.

Improvement of Variable Renewable Energy Penetration of Stand-Alone Microgrid Hosting Capacity by Using Energy-Storage-System Based on Power Sensitivity

  • CHOI, DongHee
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • Recently, the demand for high penetration of variable renewable energy (VRE) penetration in a power system is increased. In consequence, distribution systems including microgrids confront the increased installation of VRE-based distributed generation. Despite of the high demand of VRE-based distributed generation in a distribution system, the installation of photovoltaic (PV) system in a distribution system has been restricted by various problems. In other words, the hosting capacity for high VRE penetration in a distribution system is limited. This paper analyzes the improvements of hosting capacity VRE penetration of stand-alone microgrid (SAMG) with energy storage system (ESS) by considering virtual-slack (VS) control based on power sensitivity. With the pre-defined power sensitivity, the ESS operates as virtual slack in the SAMG by controlling its bus voltage and phase angle indirectly. Therefore, the ESS enables the increase of VRE penetration in the SAMG. The proposed VS control is realized by analyzing the ESS as a virtual slack in power flow analysis based on power sensitivity. Then its validity is demonstrated with the case study on the SAMG in South Korea with practical data.

Optimal Operation Method and Capacity of Energy Storage System(ESS) in Primary Feeders with Step Voltage Regulator(SVR) (선로전압조정장치(SVR)가 설치된 고압배전선로에서 전기저장장치(ESS)의 최적운용 및 적정용량 산정방안)

  • Kim, Byungki;Ryu, Kyung-Sang;Kim, Dae-Jin;Jang, Moon-seok;Ko, Hee-sang;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.9-20
    • /
    • 2018
  • When a large-scale photovoltaic (PV) system is introduced into a distribution system, the customer's voltage may exceed the allowable limit ($220V{\pm}6%$) due to voltage variations and reverse power flow in the PV system. In order to solve this problem, we propose a method for adjusting the customer voltage using the existing step voltage regulator (SVR) installed in the primary feeder. However, due to the characteristics of a mechanically operating SVR, the customer voltage during the tap changing time of the SVR is likely to deviate from the allowable limit. In this paper, an energy storage system (ESS) with optimal operation strategies, and an appropriate capacity calculation algorithm are proposed, and the parallel driving scheme between the SVR and the ESS is also proposed to solve the customer voltage problem that may occur during the tap changing time of the SVR. The simulation results show that the allowable limit of the customer voltage is verified by the proposed methods during the tap changing time of the SVR when the large-scale PV system is connected to the distribution system.