• Title/Summary/Keyword: PV-모듈

Search Result 440, Processing Time 0.025 seconds

Analysis and comparison of initial performance degradation for single crystalline silicon solar cell under open and short circuit (단결정 태양전지의 단락 및 개방 시 노광에 의한 초기 출력저하 비교 분석)

  • Jung, Tae-Hee;Kim, Tae-Bum;Shin, Jun-Oh;Yoon, Na-Ri;Woo, Sung-Cheol;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.16-21
    • /
    • 2010
  • It is well-known that Boron-doped Cz Si solar cells suffer light-induced degradation due to boron-oxygen defect which is responsible of a reduction in lifetime and hence efficiency. In this paper, we assume that PV solar cell has been connected with variable load to account the real operating condition and it shows different light-induced degradation of Si solar cell. To evaluate the effect of light-induced degradation for solar cell with various load, Single crystalline solar cells are connected with open and short circuits during light exposure. Isc-Voc curve evaluate light induced degradation of solar cells and the reason is explained as a change for serial resistance. From the results, Electrical characteristics of solar cells show better performance under short circuit conditions, after light exposure.

A implement Android OS-based black-box system in the vehicle (안드로이드 OS 기반의 차량용 블랙박스 시스템 구현)

  • Song, Min-Seob;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.483-486
    • /
    • 2011
  • Recently, large and small vehicle accidents due to human life and property due to loss of function similar to that used on the plane with a black box mounted on the vehicle by the driver of the vehicle in order to analyze the cause of the accident vehicle you are using a black box. The black box used in the existing operating system, unlike the Android OS portability is good compared to other OS support an open platform for the development of additional costs or proven, which includes many libraries need to use any external libraries there are no advantages. In addition, the existing black box on the incident can not be sent automatically to report an accident notification has a problem. In this paper, another advantage of the OS used in a black box with an Android-based acceleration sensor on the test board GPS module and smart phones using the information, and incident detection capability to send a message to the specified number of black boxes with was implemented.

  • PDF

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

Optimizing Lamination Process for High-Power Shingled Photovoltaic Module (고출력 슁글드 태양광 모듈의 라미네이션 공정조건 최적화)

  • Jeong, Jeongho;Jee, Hongsub;Kim, Junghoon;Choi, Wonyong;Jeong, Chaehwan;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • Global warming is accelerating due to the use of fossil fuels that have been used continuously for centuries. Now, humankind recognizes its seriousness, and is conducting research on searching for eco-friendly and sustainable energy. In the field of solar energy, which is a kind of eco-friendly and sustainable, many studies are being conducted to enhance the output performance of the module. In this study, the output improvement for the shingled module structure was studied. In order to improve the output performance of the module, the thickness of the encapsulant was increased, and the lamination process conditions have been improved accordingly. After that, the crosslinking rate was analyzed, and the suitability of the lamination process conditions was judged using this. In addition, a peeling test was conducted to analyze the correlation between the adhesion of the encapsulant and the output performance of the module. Finally, the optimization for the encapsulant material and the lamination process conditions for high-power shingled modules was established, and accordingly, the market share of high-power shingled modules in the solar module market can be expected to rise.

Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis (표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출)

  • Lee, Cheonkyu;Jeong, Hyo Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

The Study on the Long-term Reliability Characteristics of Ribbon Joint: Solar Cell Ribbon Thickness and Solder Compositions (태양전지 Ribbon 두께와 조성에 따른 Ribbon접합부의 장기 신뢰성 특성에 관한 연구)

  • Jeon, Yu-Jae;Kang, Min-Soo;So, Kyung-Jun;Lee, Jae-June;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.88-94
    • /
    • 2014
  • In this paper, Thermal Shock tests were performed varying the composition of the solder and ribbon thickness (A-type:0.2mm/60Sn40Pb, B-type:0.25mm/60Sn40Pb, C-type:0.2 /62Sn36Ag2Pb, D-type:0.25mm/62Sn36Ag2Pb) for evaluating the long-term reliability about Ribbon junction of Silicon solar cells. Thermal Shock test condition was performed during the 600cycles having $-40^{\circ}C{\sim}85^{\circ}C$ temperature range each 15 minutes; One cycle time was 30min. As a result, the initial efficiency of the A-type, B-type, and C, D-type were showed 15.0%, 15.4% and 15.8% respectively. After thermal shock test, the efficiency decreasing-rate of each type were as follow that A-type was 13.8%, B-Type was 15.4%. C-Type and D-Type was 15.3% and 16.2%, respectively. Also, degradation of surface changes and I-V characteristic curves were showed that the series resistance of the A, C-type was increased. Also, current lowering starting point of C-type shown 0.05volt[v] earlier than that of A-type. And B, D-type shown characteristics of composite lowering efficiency such as increase of series resistance, decrease of parallel resistance and cell damage. Therefore Initial solderability and efficiency of specimens using the solder with SnAgPb were superior. But, It has inferior the long-term reliability. The test was confirmed that as the ribbon thickness increases, long-term reliability of solar cell will decrease.

An Experimental Study on Ground Resistivity and Grounding Resistance of Water Environment (수상환경의 대지저항률 및 접지저항 측정의 실험적 연구)

  • Choi, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2343-2348
    • /
    • 2014
  • Main ground net of power plant is formed to protect human body from increase in potential gradient caused by grounding current during ground fault. Calculations during ground design are generally performed according to IEEE Std-80-2000 (Kepco Design Standard 2602). However, it is difficult to apply this Standard to water environment, and a grounding technology is required to secure grounding resistance of floating photovoltaic system. Therefore the aim of this paper is to investigate and analyze ground resistivity on the water surface and underwater of reservoir using Wenner 4-pin method, a general method of measuring ground resistivity. Also, grounding resistance of floating photovoltaic systems currently in operation was measured and analyzed using the voltage drop method suggested in the international standard (IEEE Std-81) to propose a grounding method for stable grounding of floating photovoltaic system. The resistivity at 1m below the surface of water ($126.3969[{\Omega}{\cdot}m]$) is mostly higher than resistivity at the river bed ($97.5713[{\Omega}{\cdot}m]$). Also the proposed grounding anchor method was determined as the most effective method of securing stable grounding resistance in floating photovoltaic systems and is expected to be utilized as a ground method for future floating photovoltaic generation systems.

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.