• 제목/요약/키워드: PV power generation

검색결과 536건 처리시간 0.033초

수상태양광 발전 시스템의 환경에 따른 모듈의 전기적 특성 (The Electrical Characteristics of The Modules According to The Environment of The Floating Photovoltaic System)

  • 황수현;이동영;권오극;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.283-289
    • /
    • 2018
  • In our study, we collected data from a 100 kW floating photovoltaic (PV) system installed in Gyeongnam Hapcheon Dam and observed correlations between the power generation of the floating PV system and the irradiance, water temperature, humidity, ambient temperature, wind speed, and module temperature. Firstly, there was little correlation between the water temperature and power generation. Secondly, the ambient temperature, wind speed, and humidity all showed greater correlations with power generation. Finally, the power generation was very highly correlated with the irradiance and module temperature. In conclusion, the power generation of the floating PV system is related individually to environmental factors.

Analysis of Stability of PV System using the Eigenvalue according to the Frequency Variation and Requirements of Frequency Protection

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.480-485
    • /
    • 2012
  • Use of photovoltaic (PV) power generation system will become more widespread in the future due to anticipated cost reduction in PV technology. As the capacity of PV systems increases, a variation of power system frequency may prevent the stable output of PV system. However, the standard for the frequency protection of distributed generation in Korea Electric Power Corporation (KEPCO)'s rule does not include the setting of frequency protection. Therefore, this paper analyzes the correlation between the frequency protection requirements and the stability of grid-connected PV system for the adjustable operating setting of frequency protection. The distribution system interconnected with 3 MW PV system is modeled by Matlab/Simulink. The various values of frequency are simulated. For studied cases, the stability of PV system is analyzed. It is concluded that the setting of frequency protection is necessary to consider the stability of PV system.

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

태양광 발전시스템에서 모듈 설치 각도와 어레이 간격의 비교 연구 (Comparison Researches for Installation of the Module Angles and Array Spacing on Photovoltaic Power System)

  • 최동진
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.162-168
    • /
    • 2009
  • 본 논문에서는 태양전지를 가지고 일정량의 태양광으로부터 최대 유효전력을 얻기 위해 고정식 태양광 발전시스템과 태양 위치추적기를 부착한 태양광 발전시스템에서 PV모듈의 각도 변화 및 어레이 간격에 따른 최적의 발전효율에 대한 연구 및 실험을 하였다. 먼저, PV 모듈의 다양한 각도를 가지고 실험한 결과 PV 모듈 경사각 30[$^{\circ}$]에서 측정한 결과 값이 경사각 20[$^{\circ}$] 및 40[$^{\circ}$]일 때보다 발전 효율이 $12{\sim}17$[%] 상승되었다. 그러므로 본 논문의 연구 결과에서는 태양광 발전시스템의 실용화 측면에서 PV 모듈의 경사각 30[$^{\circ}$] 설치를 하여 발전을 하는 것이 가장 좋은 변환 효율을 얻을 수 있었다. 하지만 태양전지를 지붕 및 옥상에 설치를 할 경우, 면적 활용이 좁고 겨울에 눈이 쌓이게 될 경우에는 경사각에 의해 빠르게 쓸려 내려갈 수 있도록 경사각을 35[$^{\circ}$]로 선정하는 것이 타당하다.

Control strategies of energy storage limiting intermittent output of solar power generation: Planning and evaluation for participation in electricity market

  • Sewan Heo;Jinsoo Han;Wan-Ki Park
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.636-649
    • /
    • 2023
  • Renewable energy generation cannot be consistently predicted or controlled. Therefore, it is currently not widely used in the electricity market, which requires dependable production. In this study, reliability- and variance-based controls of energy storage strategies are proposed to utilize renewable energy as a steady contributor to the electricity market. For reliability-based control, photovoltaic (PV) generation is assumed to be registered in the power generation plan. PV generation yields a reliable output using energy storage units to compensate for PV prediction errors. We also propose a runtime state-ofcharge management method for sustainable operations. With variance-based controls, changes in rapid power generation are limited through ramp rate control. This study introduces new reliability and variance indices as indicators for evaluating these strategies. The reliability index quantifies the degree to which the actual generation realizes the plan, and the variance index quantifies the degree of power change. The two strategies are verified based on simulations and experiments. The reliability index improved by 3.1 times on average over 21 days at a real power plant.

반사판을 이용한 태양광발전시스템 실증연구 (Demonstration Research of Photovoltaic System with Solar Reflectors)

  • 김용식;강기환;심상용;이후락;이진섭;홍진기
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.64-69
    • /
    • 2009
  • This paper aims at enhancing the electric production efficiency of photovoltaic(PV) system. The electrical power of PV system is proportional to light intensity on a PV module surface. In this paper, we apply two types of systems to enhance power generation efficiency. First, of all, concentring sunlight using specular surface and one-axis tracking system which traces the sun with vertical direction are applied in this project. From this, we analyze the fixed type method and power generation efficiency.

연계형 태양광발전설비의 새로운 오동작 방지 및 재병입 알고리즘 제안 (Algorithm for Preventing Malfunction and Reclosing in Grid-Connected PV Systems)

  • 황민수;전태현
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.70-76
    • /
    • 2012
  • In general, the unidirectional power flow is normal in distribution feeders before activation of distributed power source such as PV. However, the interactive power flow is likely to occur in case of the power system under distributed generation. This interactive power flow can cause an unexpected effect on convectional protection coordination systems designed based only on the unidirectional power flow system. When the power line system encounters a problem, the interactive power flow can be a contributed current source and this makes the fault current bigger or smaller compared to the unidirectional case. The effect of interactive power flow is varied depending on the location of the point to ground fault, relative location of the PV, and connection method. Therefore it is important to analyse characteristics of fault current and interactive flow for various transformer connection and location of the PV. This paper proposes a method of improved protection coordination which can be adopted in the protective device for customers in distribution feeders interconnected with the PV. The proposed method is simulated and analysed using PSCAD/EMTDC under various conditions.

PV Output Senseless (POS) MPPT 제어법이 적용된 단상 PCS 개발 및 운전특성 분석 (The development and operation characteristics analysis of PCS applied PV Output Senseless (POS) MPPT)

  • 이석주;박해용;김경훈;서효룡;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.226-227
    • /
    • 2007
  • The purpose of this study for photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional MPPT (Maximum Power Point Tracking) control method, both voltage and current coming out from PV array have to be fedback. Thus, the system has a complex structure, and may fail to track MPP of PV array when unexpected weather conditions happen. This paper proposes a novel PV Output Senseless (POS) control method to solve the mentioned problem. The main advantage of this method is that the current flowing into load is the only one considerable factor. In case of a huge PV generation system, it can be operated much more safely than the conventional system. To verify this theory, results that compare and analyze the simulated data with experimental data under real weather condition of the manufactured PV generation system are shown in this paper. Authors vividly states that this theory uses constant resistors and variable resistors of DC-DC converter in PV system. Authors emphasize that it is a very useful method to maximize power from PV cells to load with only the feedback of load current. Authors also emphasize that this theory is applicable in case of the PCS in PV power generation system.

  • PDF

미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측 (Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter)

  • 성상경;조영상
    • 자원ㆍ환경경제연구
    • /
    • 제28권4호
    • /
    • pp.467-495
    • /
    • 2019
  • 태양광 발전과 같은 신재생에너지의 불확실성은 전력계통의 유연성을 저해하며, 이를 방지하기 위해서는 정확한 발전량의 사전 예측이 중요하다. 본 연구는 미세먼지 농도를 포함한 기상자료를 이용하여 태양광 발전량을 예측하는 것을 목적으로 한다. 본 연구에서는 2016년 1월 1일부터 2018년 9월 30일까지의 발전량, 기상자료, 미세먼지 농도 자료를 이용하고 머신러닝 기반의 RBF 커널 함수를 사용한 서포트 벡터 머신을 적용하여 태양광 발전량을 예측하였다. 예측변수에 미세먼지 농도 반영 유무에 따른 태양광 발전량 예측 모델의 성능을 비교한 결과 미세먼지 농도를 반영한 발전량 예측 모델의 성능이 더 우수한 것으로 나타났다. 미세먼지를 고려한 예측 모형은 미세먼지를 고려하지 않은 예측 모형 대비 6~20시 예측 모형에서는 1.43%, 12~14시 예측 모형에서는 3.60%, 13시 예측 모형에서는 3.88%만큼 오차가 감소하였다. 특히 발전량이 많은 주간 시간대에 미세먼지 농도를 반영하는 모형의 예측 정확도가 더 뛰어난 것으로 나타났다.

ELM을 이용한 일별 태양광발전량 예측모델 개발 (Development of Daily PV Power Forecasting Models using ELM)

  • 이창성;지평식
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.164-168
    • /
    • 2015
  • Due to the uncertainty of weather, it is difficult to construct an accurate forecasting model for daily PV power generation. It is very important work to know PV power in next day to manage power system. In this paper, correlation analysis between weather and power generation was carried out and daily PV power forecasting models based on Extreme Learning Machine(ELM) was presented. Performance of district ELM model was compared with single ELM model. The proposed method has been tested using actual data set measured in 2014.