• Title/Summary/Keyword: PV module temperature

Search Result 196, Processing Time 0.036 seconds

Temperature Study of the Efficiency in single-crystalline Photovoltaic Module (결정질 실리콘 태양전지 모듈의 온도 상승에 따른 효율변화특성)

  • Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.111-112
    • /
    • 2005
  • It is well known that the efficiency of photovoltaic modules decreases with an increase of temperature. In this paper, both efficiency and maximum power(Pm) variation with temperature are investigated using numerical simulation. Various carrier transport mechanisms and several recombination parameters of all the cell materials are taken into account. The theoretical result are compared with the reference data and they are shown to agree quite well over a wide range of temperatures.

  • PDF

A Study on The Electrical Characteristics in Ribbon by Temperature Changes (온도 변화에 따른 Ribbon의 전기적 특성에 관한 연구)

  • Woo, Sung-Cheol;Jung, Tae-Hee;Kim, Tae-Bum;Kang, Ki-Hwan;Ahn, Hyeung-Ken;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.67-67
    • /
    • 2010
  • PV module has many power loss factor in the site. Among them, one thing is series resistance. Especially interconnection ribbon resistance is one of the power loss. In this paper, we study interconnection ribbon resistance of the PV module material. In the field, high temperature can pile ribbon resistance on the PV modules. We can do better choice in the optimum use of ribbon through checking relation of ribbon dimension and resistivity. From this point of view, different solder type and dimension was treated.

  • PDF

The analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property (태양전지모듈의 국부적 열특성 변화에 따른 장기적 내구성 및 출력특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.214-215
    • /
    • 2007
  • Int this paper, we studied the analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property. Using 5 modules(80W), we measured the maximum output power change during the test period. And the optical transmittance of glass was compared with PV module's maximum power fluctuation. The external environment change effected contamination on the entire or local surface of module. This caused the local temperature variation of each solar cell on PV module. The specific analysis is shown in the following paper.

  • PDF

Analysis of Output Characteristics of Lead-free Ribbon based PV Module Using Conductive Paste (전도성 페이스트를 이용한 무연 리본계 PV 모듈의 출력 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • Environmentally benign lead-free solder coated ribbon (e. g. SnCu, SnZn, SnBi${\cdots}$) has been intensively studied to interconnect cells without lead mixed ribbon (e. g. SnPb) in the crystalline silicon(c-Si) photovoltaic modules. However, high melting point (> $200^{\circ}C$) of non-lead based solder provokes increased thermo-mechanical stress during its soldering process, which causes early degradation of PV module with it. Hence, we proposed low-temperature conductive paste (CP) based tabbing method for lead-free ribbon. Modules, interconnected by the lead-free solder (SnCu) employing CP approach, exhibits similar output without increased resistivity losses at initial condition, in comparison with traditional high temperature soldering method. Moreover, 400 cycles (2,000 hour) of thermal cycle test reveals that the module integrated by CP approach withstands thermo-mechanical stress. Furthermore, this approach guarantees strong mechanical adhesion (peel strength of ~ 2 N) between cell and lead-free ribbons. Therefore, the CP based tabbing process for lead free ribbons enables to interconnect cells in c-Si PV module, without deteriorating its performance.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

Temperature and Power Generation Characteristics of c-Si G/G Spandrel Window depending on Opening Ratio of PV Module (스팬드럴용 투광형 결정계 PV창호의 셀 간격 개구율에 따른 온도 및 발전성능 해석연구)

  • Yoon, Jong-Ho;Kim, Dong-Su;Oh, Myung-Hwan;Lee, Jae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.51-58
    • /
    • 2012
  • This study aims to analyze characteristics of Cell surface temperature and generated power performance for improving PV(Photovoltaic) system condition according to the cell opening ratio of transparent crystal PV system at Spandrel of curtain-wall. For this purpose, alternatives were classified for eight different cases that opening ratio of transparent crystal PV system varied from 0% to 70%, which was used by simulation tool, EnergyPlus. As results, it turned out that increasing opening ratio of transparent crystal PV system led higher PV surface temperature, back-sheet type was thus the most advantageous for decreasing surface temperature, annual generating efficiency, and annual accumulated generating power. Consequently, blocking off air space from outside insolation can advantageously keep to be better condition for generated power performance.

Long-Term Reliable Test of Photovoltaic Modules (태양광모듈의 장기적 신뢰성 실험)

  • Kim, Kyung-Soo;Kwon, Oh-Eun;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1405-1405
    • /
    • 2011
  • Sudden earthquake is changing national energy stratagem for future energy resource. In case Germany, current nuke power station will be shut down with several decades. Newly constructed build in Japan must have photovoltaic system as a obligations.. As a long-term sustainable energy one, PV should give confidence to customers up to more than 20 years. Today, IEC 61215 and IEC 61646 standards are representative one for ensuring performance and safety of PV module. But it is still needed to develop more realistic test method. For example, if we think about extreme condition like desert and North Pole, the temperature condition describe in test standards can have little effect on life time expectation of PV module. Installation speed of PV system is very high, but establishing test standards are very complex and not easy. So in this paper, I tried to open the long-term test method for PV module to ensure 25 year's old life time. It is just starting point of PV related long-term test methods. The specific and technical explanation will be shown in the following paper in detail.

  • PDF

Development of Wireless IoT Sensors for Individual Photovoltaic Module Monitoring (태양광 모듈 개별 모니터링을 위한 무선 IoT센서)

  • Park, Jongsung;Kim, Changheon;Lee, Jiwon;Kim, Jihyun;Yoo, Sanghyuk;Yang, Bum Seung
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.106-109
    • /
    • 2021
  • In order to perform photovoltaic (PV) operation and management (O&M) efficiently, individual PV module monitoring is becoming more important. In this research, we developed wireless IoT sensor which can monitor individual photovoltaic modules. This IoT sensor can detect the output voltage, current and module temperature of individual modules and provide monitored data by wireless communication. Measured voltage error was 1.23%, and it shows 16.6 dBM, 0.42sec and 7.1 mA for voltage, transmittance output, response time and mean power consumption, respectively. IoT sensors were demonstrated in the test field with real climate environment condition and each of 5 sensors showed precise results of voltage, current and temperature. Also, sensors were compared with commercial power-optimizers and showed result difference within 5%.

A Study on the Photovoltaic System Inverter Sizing (태양광발전시스템 인버터 용량 산정에 관한 연구)

  • Lee, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.

A Study on the System Principle of PID Module Implementation (PID Module 구현 원리 시스템에 대한 연구)

  • 위성동;김태성;최창주;권병무
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.183-192
    • /
    • 1999
  • The derivative equation measured of a ${\Delta}MV=Kp*{(EVn-EVn-1)+\frac{1}{Ki/S}* EVn+(Kd/S)*(2PVn-1-PVn-PVn-1)}$ is used on the machine apparatus of industrial field, but this par doesn\`t able to educate now, because we didn\`t have the implementation device of PID module, so the principle implementation system of the PID Module is manufactured and developed. Through this system, the implementation system of PID Module is practiced with that the SV and the set of P, I, D is set on the derivative equation measured of PID. A things to be known of this experiment result is flow. 1)PID module is known that had to be used with the module of A/D and D/A. 2) In process of PV is approached to the SV to follow Kp, Ti and Td to cause a constant of set value on the $MVp=Kp*EV, MV=\frac{1}{Ki}{\int}EVdt, MVd=Td\frac{d}{dt}EV$, the variable rate of E and Kp, Td, Ti in that table 1 is analysed, is same as flow. (1)If Kp is high, PV is near fast to the SV, but Kp is small, PV is near slowly to the SV. (2)If Ki is shot, PV is close fast to the SV, but Ti is high, PV is close slowly to the SV (3)If Td is high, the variable rate of E press hardly when because it doesn\`t increase, but Td is small, the variable rate of E press not hardly, upper with 1), 2), PID module is supposed that be able to do the A/S and an implementation of that apparatus, and getting a success of aim that an engineer want, on control of temperature, tension, velocity, amount of flow, power of wind end so on, to get the principle of automatic implementation in industrial field with cooperation of A/D and D/A module.

  • PDF