• 제목/요약/키워드: PV module design

검색결과 106건 처리시간 0.024초

사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석 (The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module)

  • 정선옥;천진아;김진희;김준태;조인수;남승백
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

액체식 PV/Thermal 복합모듈의 성능실험연구 (An Experimental Study of a Water Type PV/Thermal Combined Collector Unit)

  • 이현주;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.105-111
    • /
    • 2007
  • Hybrid PV/Thermal systems consisting of photovoltaic module and thermal collector can produce the electricity and thermal energy. The solar radiation increases the temperature of PV modules, resulting in the decrease of their electrical efficiency. Accordingly hot air can be extracted from the space between the PV panel and roof, so the efficiency of the PV module increases. The extracted thermal energy can be used in several ways, increasing the total energy output of the system. This study describes a basic type of PV/T collector using water. In order to analyze the performance of the collector, the experiment was conducted. The result showed that the thermal efficiency was 17% average and the electrical efficiency of the PV module was about $10.2%{\sim}11.5%$, both depending on solar radiation, inlet water temperature and ambient temperature.

Jerk 함수를 적용한 태양광 스트링 내의 노후화 모듈 검출 기법 (Detection of Aging Modules in Solar String with Jerk Function)

  • 손한별;박성미;박성준
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.356-364
    • /
    • 2019
  • In this study, major problems, such as licensing problems due to civil complaints, deterioration of facility period, and damage of modules, are exposed to many problems in domestic businesses. Particularly, the photovoltaic (PV) modules applied to early PV systems have been repaired and replaced over the past two decades, and a new module-based aging detection method is needed to expand the maintenance market and stabilize and repair power supplies. PV modules in a PV system use a string that is configured in series to generate high voltage. However, even if only one module of the solar modules connected in series ages, the power generation efficiency of the aged string is reduced. Therefore, we propose a topology that can measure the instantaneous PV characteristic curve to determine the aging module in the solar string and the aging judgment algorithm using the measured PV characteristic curve.

고분자 보호 필름을 적용한 태양광 모듈의 출력 및 신뢰성에 관한 연구 (A Study on the Output and Reliability Characteristics of Ultra Barrier Film PV Module)

  • 임종록;신우균;윤희상;김용성;주영철;고석환;강기환;황혜미
    • 한국태양에너지학회 논문집
    • /
    • 제39권5호
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, the installation capacity of PV (photovoltaic) systems has been increasing not only field installation but also floating PV, farm land, BIPV/BAPV. For this reason, the new design and materials of PV module are needed. In particular, in order to apply a PV system to a building, lightweight of the PV module is essential. PV modules made of generally used texturing glass are excellent in output and reliability, but there is a limit to the weight that can be reduced. For the lightweight of the PV module, it necessary to use a film instead of a glass. However, the application of film rather than a glass may cause various problems such as decrease in photocurrent by decrease in transmittance and a increase of CTM (cell to module) loss, a degradation of the reliability, and so on. In this paper, PV modules using Ultra barrier film, which is recently a lot of interest as a substitute for a glass, its characteristic analysis and reliability test were conducted. The transmittance and UV characteristics of each material were verified, and the output of the fabricated 1 cell PV module was measured. In addition, 24 cell PV modules were fabricated at the lab-scale and its reliability tests were conducted. As a result of the experiment, the reliability characteristics of the ultra barrier film PV module were excellent, and it was confirmed that it could be used as the front material of the PV module instead of glass

태양광발전 시스템 설계를 위한 시뮬레이터 개발 (Simulator Development for Stand Alone PV System Design)

  • 강신영;김광헌
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.383-388
    • /
    • 2003
  • The stand alone PV system's stability and cost is influenced by a design method, as its application products are various. In order to systematize the the stand alone PV system's design method based on experience, this research settled the capacity computation method of PV module and battery and developed a simulator. And Its characteristic is confirmed by applying to PV street lamp design.

  • PDF

공기식 PVT 컬렉터의 디자인 및 성능에 관한 연구 동향 분석 연구 (A Literature Review on Hybrid PV/Thermal Air Collector in terms of its Design and Performance)

  • 김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.30-41
    • /
    • 2014
  • PV/Thennal combined system is a solar energy device that uses photovoltaic module as thermal absorption plate, producing thermal energy as well as electricity which can be utilized in buildings. The system removes heat from PV module through air or liquid and its efficiency will vary dependant on the thermal medium. The heat as the forms of hot air or hot water can be utilized for building use, like space heating and hot water. A significant amount of research and development on hybrid PV/thermal(PVT) collectors has been carried out. This study reviews literature on the research of air-based hybrid PVT collectors in terms of their design and energy performance.

태양광모듈의 모델링 및 성능해석 결과비교 (A modeling and performance comparison of photovoltaic module)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1128-1129
    • /
    • 2008
  • The detailed modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV array performance for changing meteorological conditions, verify actual rated power of PV system sizing and, determine the optimal design of PV system and components. This paper investigates a modeling approach of PV module performance in terms of irradiance and temperature changes and compared measured with simulated value of PV modules.

  • PDF

해석모델을 이용한 태양광모듈의 성능결과 비교분석 (Comparison Results of Photovoltaic Module Performance using Simulation Model)

  • 소정훈;유병규;황혜미;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

건물외피용 태양광발전 BIPV 모듈 개발 연구 (Development of Building Integrated PV(BIPV) module for the replacement of commercial building envelope materials)

  • 윤종호;김종일;이길송;유권종
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.113-119
    • /
    • 2004
  • As Building Integrated Photovoltaic(BIPV) system replaces the conventional building finishing materials with PV modules, two function of electricity generation and building envelope can be expected. Therefore BIPV can be a good alternative technology for the 21 century environment-friendly buildings. The objective of this paper is to develope BIPV modules for a commercial buildings of which structure is mainly light-weight, curtain wall system. Two types of module are developed for a opaque part and a transparent part of building envelope. Current technology level and market status of Korea determines the configuration of developed BIPV modules. Architectural considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully reflected from the early stage of BIPV module design. Especially the survey result of current building envelope materials determines the size of unit BIPV modules and a unique cladding method for PV module installation is developed. Trial product of BIPV modules and cladding hardwares are manufactured and sample construction details for a demonstration building are proposed.

Design and Control of Novel Topology for Photovoltaic DC/DC Converter with High Efficiency under Wide Load Ranges

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.300-307
    • /
    • 2009
  • In this paper, design and control is proposed for a four input-series-output-series-connected ZVS full bridge converter for the photovoltaic power conditioning system (PCS). The novel topology for a photovoltaic (PV) DC/DC converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing PV module characteristics is proposed. The control scheme, including an input voltage controller is proposed to achieve equal sharing of the input voltage as well output voltages by a four series connected module. Design methods for ZVS power stage are also introduced. The total PV system is implemented for a 250-kW PV power conditioning system (PCS). This system has only three DC/DC converters with a 25-kW power rating and uses only one-third of the total PV PCS power. The 25-kW prototype PV DC/DC converter is introduced to verify experimentally the proposed topology. In addition, an experimental result shows that the proposed topology exhibits good performance.