• Title/Summary/Keyword: PV model

Search Result 274, Processing Time 0.028 seconds

Structural Analysis Model to Evaluate the Mechanical Reliability of Large-area Photovoltaic Modules (대면적 태양광 모듈의 기계적 신뢰성 평가를 위한 모델)

  • Noh, Yo Han;Jeong, Jeong Ho;Lee, Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.56-61
    • /
    • 2022
  • Recently, the expansion of the domestic solar market due to the promotion of eco-friendly and alternative energy-related policies is promising, and it is expected to lead the high-efficiency/high-power module market based on M10 or larger cells to reduce LCOE, 540-560W, M12 based on M10 cells Compared to the existing technology with an output of 650-700W based on cells, it is necessary to secure competitiveness through the development of modules with 600W based on M10 cells and 750W based on M12 cells. For the development of high efficiency/high-power n-type bifacial, it is necessary to secure a lightweight technology and structure due to the increase in weight of the glass to glass module according to the large area of the module. Since the mechanical strength characteristics according to the large area and high weight of the module are very important, design values such as a frame of a new structure that can withstand the mechanical load of the Mechanical Load Test and the location of the mounting hole are required. In this study, a structural analysis design model was introduced to secure mechanical reliability according to the enlargement of the module area, and the design model was verified through the mechanical load test of the actual product. It can be used as a design model to secure the mechanical reliability required for PV modules by variables such as module area, frame shape, and the location and quantity of mounting holes of the structural analysis model verified. A relationship of output drop can be obtained.

A Case Study of Resolving Conflict in Energy Infrastructure Siting by the Solar PV Project

  • Lee, Jonghwan;Shin, Dong-hwi;Han, Soohee;Roh, Jae Hyung
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.79-85
    • /
    • 2020
  • The growing demand for new energy infrastructure has often been encountered with the difficulties of siting in power plants and electric transmission lines. Siting such large-scale and complex facilities produces so many-sided issues that it is highly necessary to develop an approach to resolving the related problems and conflicts. This paper introduces how the stakeholders have handled the issues and resolved conflicts with residents opposed the construction of 765 kV transmission line. The solar photovoltaic power generation, called "Hee-Mang Sunlight Power project", is used for persuading residents to agree with constructing high-voltage transmission line and sharing benefits. It is considered how the project performance such as generation output and resident's profits is and proposed what the project should be revised and supplement. The project is shown that the intractable spiting in energy systems can be smartly resolved with cost-effective institutional solutions instead of relatively expensive technical ones.

Modeling of Photovoltaic System using eMEGASim (eMEGASim을 이용한 태양광 시스템 모델링)

  • An, Hee-Jin;Song, Jin-Ho;Seo, Hun-Chul;Seo, Hyun-Suk;Kim, Dong-Su;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.700-701
    • /
    • 2011
  • This paper introduces the modeling of PhotoVoltaic(PV) using eMEGASim. For being close to reality, the model controls the MPPT and inverter in system which composed of closed-loop using eMEGASim. Thus, the results of real-time simulation show that outputs of the PV Arrays are more realistic.

  • PDF

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

Optimization of Residential Photovoltaic-Fuel Cell Hybrid System Using HOMER(R) (HOMER를 이용한 가정용 태양광-연료전지 하이브리드시스템의 운전 최적화)

  • Park, Se-Joon;Li, Ying;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.129-133
    • /
    • 2010
  • A hybrid system which is combined several complementary new and renewable power sources, such as photovoltaic, fuel-cell, and wind generator, etc., has been presented in various approaches. For instance, a photovoltaic cannot always generate stable output power with ever-changing weather condition, so it might be co-generated with a wind generator, diesel generator, and some other sources. In this paper, a residential PV-FC hybrid system is suggested as a distribution power source, and its operation is optimized by HOMER$^{(R)}$. As a result, it is the most economic that 5[kW] PV, 1[kW] FC, 4 batteries, 2[kW] electrolyzer, 0.5[kg] $H_2$ tank, 3[kW] converter are applied to the hybrid system.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

PV Model-based Solar Array Simulator using Hybrid Control Method (PV-모델 기반 태양광 발전 패널 모사 장치의 하이브리드 제어기법)

  • Seo, Young-Tae;Wellawatta, Thusitha;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.134-135
    • /
    • 2017
  • 태양광 패널 등가모델을 결합한 태양광 발전 패널 모의 장치(SAS)는 정확도 면에서 많은 장점이 있다. 특히 SAS에서 사용되는 등가회로 모델은 주변 환경에 맞게 빠르게 변하는 I-V 출력특성을 추출하며, 추출시간이 짧다. 이러한 방법을 이용하려면 제어기를 주목해야하는데, 보통 전압 또는 전류 제어기 하나만 사용한다. 하지만 Fill factor가 높은 패널인 경우, 전압 또는 전류제어기 하나만 사용하여서는 제어가 잘 되지 않기 때문에 본 논문에서는 전압과 전류제어기 모두 사용하되, 필요에 따라 스위칭 하여 사용하는 하이브리드 제어기법을 제안한다. 이러한 기법을 통하여 모두 제어가 가능한 기법을 제안한다.

  • PDF

Solar Cell Arrays Connection of Large Scale PV System (대규모 PV시스템의 태양전지 어레이 구성법)

  • Yu, Gwon-Jong;Song, Jin-Soo;Ro, Myong-Gun;Sung, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.326-328
    • /
    • 1996
  • The 10kW or 1MW model of a photovoltaic array written in PSPICE is presented in this paper. A problem with this large scale centralized photovoltaic system is the decrease of power due to the resistance of cable connecting individual subarray with inverter. In this paper, we analyzed the relationship between the resistance of cable and subarray output power of 1MW photovoltaic system by the PSPICE modeling. As a result of simulation, we can proved that photovoltaic array output power is limitted by the resistance of cable.

  • PDF

A Study on Adaptive Converter Control Approach for Velocity Control of Electric Motors with Photovoltaic Power Generators (태양광 발전 기반 전동기 속도 제어를 위한 적응형 컨버터 제어 기법에 관한 연구)

  • Park, Sung Won;Kim, Dong Wan;Cho, Hyun Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1400-1406
    • /
    • 2016
  • This paper presents a new adaptive converter control approach for electric motor systems whose voltage source is excited from photovoltaic (PV) power generators. First, an electric model is represented with dynamic states and output velocity of such DC motor systems. We propose a hybrid converter control law in which a state feedback control is applied as an auxiliary control framework. Moreover, control parameter estimation is derived to realize adaptive converter systems for effective control performance against stochastic PV power excitation in practice. We carry out stability analysis for such converter system by using a well-known eigenvalue theory. Lastly, numerical simulation is conducted to test reliability of the proposed converter control approach and prove its superiority in the control point of view.

Optimal Capacity Design and Economic Evaluation of Hybrid Generation Systems Based on the Load Characteristics (부하특성에 따른 복합발전시스템의 최적용량 설계 및 경제성 분석)

  • Lim, Jong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1103-1109
    • /
    • 2013
  • This paper presents an optimal capacity design of a Hybrid generation system based on economical evaluation for various loads. Optimal sizes of a standalone and grid connection wind- PV hybrid systems were designed for normal, residential and industrial loads using HOMER (Hybrid Optimization Model for Electronic Renewable). Their economical evaluation were performed and compared with a diesel generation system that covers the same loads. The results showed that the stand alone hybrid generation system can be more economical than a diesel generation system for long term operation.