• Title/Summary/Keyword: PV measurement system

Search Result 42, Processing Time 0.029 seconds

PvT measruement method of polymer using capillary rheometer (캐필러리 레오미터를 이용한 고분자의 PvT 측정 방법)

  • Kim, Sun-Kyoung;Park, Jae-Un
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.31-36
    • /
    • 2020
  • In injection molding processes, the property of molten resin should be characterized accurately. Among several properties, the PvT state is the most important one, since it affects the shrinkage, warpage, molded weight, and the part density. Thus, the PvT data is crucial to the simulation of the injection molding process. This work shows how such a measurement can be performed for a semi-crystalline and amorphous polymers. The PvT measurement has been conducted using a capillary rheometer using a suitable accessory that blocks the capillary. The results have shown that the PvT data can be obtained using such a rheometer and then the PvT coefficients of the Tait equation can be reached.

Detection of Aging Modules in Solar String with Jerk Function (Jerk 함수를 적용한 태양광 스트링 내의 노후화 모듈 검출 기법)

  • Son, Han-Byeol;Park, Seong-Mi;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.356-364
    • /
    • 2019
  • In this study, major problems, such as licensing problems due to civil complaints, deterioration of facility period, and damage of modules, are exposed to many problems in domestic businesses. Particularly, the photovoltaic (PV) modules applied to early PV systems have been repaired and replaced over the past two decades, and a new module-based aging detection method is needed to expand the maintenance market and stabilize and repair power supplies. PV modules in a PV system use a string that is configured in series to generate high voltage. However, even if only one module of the solar modules connected in series ages, the power generation efficiency of the aged string is reduced. Therefore, we propose a topology that can measure the instantaneous PV characteristic curve to determine the aging module in the solar string and the aging judgment algorithm using the measured PV characteristic curve.

TMOV MPPT Control of PV System with Temperature Measurement based Optimal Voltage (온도측정 기반의 최적전압을 이용한 PV 시스템의 TMOV MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.11
    • /
    • pp.30-39
    • /
    • 2012
  • The characteristics of I-V and P-V of solar cell nonlinearly changes according to irradiation, temperature and load. Therefore, to use efficiently PV system, operating point must be always operating at maximum power point. Also, PV system is semiconductor, so it generates loss by temperature. But because of conventional MPPT methods are not considering temperature, it has problem which decrease efficiency. This paper proposes temperature measurement based optimal voltage(TMOV) MPPT algorithm using temperature measurement based optimal voltage. It analyzes characteristics of solar cell according to irradiation and temperature and conventional MPPT methods. The TMOV control algorithm proposed in this paper is compared and analyzed conventional MPPT methods. The validity of this paper proves using this result.

A Measurement of Luminous Environment and Power Generation according to Control Methods of Blind PV (블라인드 PV 제어에 따른 실내 빛환경 및 발전량 측정)

  • Kim, So-Hyun;Son, A-Rom;Kim, In-Tea;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.14-21
    • /
    • 2013
  • Today, energy problem has become an important issue, and a development of renewable energy is urgent. In architectural fields, a research of the energy efficient lighting system using renewable energy is in progress. The energy efficient lighting system could be realized by integrating a daylight responsive LED lighting control system and a blind PV system. This system is able to save and generate electric energy. Efficiency of this system depends on control methods of blind PV. As a preliminary research, this research analyzed power generation and inflow of available daylight according to control method of blind PV.

A Study on the Thermal Effect and Performance of BIPV System acccording to The Ventilation Type of PV Module Backside (후면 환기 조건을 통한 BIPV 모듈 특성분석)

  • Kwon, Oh-Eun;Lee, Sang-Gil;Kang, Gi-Hwan;Yu, Gwon-Jong;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1302-1303
    • /
    • 2011
  • Building-Integrated Photovoltaic System(BIPV) has a muti-functional to generate electrical power and be able to be exterior materials for building. When PV modules are applied as envelope materials for building, the PV modules are considered on characteristics of the thermal effect and performance of PV module to optimize BIPV system synthetically. The purpose of this study is analysis of the changes of temperature and performance on PV modules. after installing four PV modules that have different ventilation type of PV module backside. Measurement results on this experiment is that the ventilation of PV module backside can control elevated module temperature and improve the performance of PV module. So, the technology development on the ventilation of PV module is suggested introducing effective BIPV system.

  • PDF

Real-Time Maximum Power Point Tracking Method Based on Three Points Approximation by Digital Controller for PV System

  • Kim, Seung-Tak;Bang, Tae-Ho;Lee, Seong-Chan;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1447-1453
    • /
    • 2014
  • This paper proposes the new method based on the availability of three points measurement and convexity of photovoltaic (PV) curve characteristic at the maximum power point (MPP). In general, the MPP tracking (MPPT) function is the important part of all PV systems due to their power-voltage (P-V) characteristics related with weather conditions. Then, the analog-to-digital converter (ADC) and low pass filter (LPF) are required to measure the voltage and current for MPPT by the digital controller, which is used to implement the PV power conditioning system (PCS). The measurement and quantization error due to rounding or truncation in ADC and the delay of LPF might degrade the reliability of MPPT. To overcome this limitation, the proposed method is proposed while improving the performances in both steady-state and dynamic responses based on the detailed investigation of its properties for availability and convexity. The performances of proposed method are evaluated with the several case studies by the PSCAD/EMTDC$^{(R)}$ simulation. Then, the experimental results are given to verify its feasibility in real-time.

Development of PV-Power-Hardware-In-Loop Simulator with Realtime to Improve the Performance of the Distributed PV Inverter (분산전원형 PV 인버터 성능 개선을 위한 실시간 처리기반의 PV-Power-Hardware-In-Loop 시뮬레이터 개발)

  • Kim, Dae-Jin;Kim, Byungki;Ryu, Kung-Sang;Lee, Gwang-Se;Jang, Moon-Seok;Ko, Hee-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.47-59
    • /
    • 2017
  • As the global warming threats to humanity, renewable energy is considered the key solution to overcome the climate change. In this circumstance, distributed PV systems are being expanded significantly its market share in the renewable energy industry. The performance of inverter is the most important component at PV system and numerous researches are focusing on it. In order to improve the inverter, PV simulator is an essential device to experiment under various load and conditions. This paper proposes the PV Power-Hardware-In-Loop simulator (PHILS) with real-time processing converted electrical and mathematical models to improve computation speed. Single-diode PV model is used in MATLAB/SIMULINK for the PV PHILS to boosting computation speed and dynamic model accuracy. In addition, control algorithms for sub-components such as DC amplifier, measurement device and several interface functions are implemented in the model. The proposed PV PHILS is validated by means of experiments with commercial PV module parameters.

A study on advanced PV operation algorithm to improve the PV Power-Hardware-In-Loop Simulator (PV PHIL-시뮬레이터의 성능 개선을 위한 최적의 운영제어 알고리즘 연구)

  • Kim, Dae-Jin;Kim, Byungki;Ko, Hee-Sang;Jang, Moon-Seok;Ryu, Kyung-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.444-453
    • /
    • 2017
  • This paper proposes an operational algorithm for a Photovoltaic Power-Hardware-In-Loop Simulator that is designed to improve the control algorithm and reliability of the PV Inverter. There was an instability problem in the PV PHILS with the conventional algorithm when it was connected tothe PV inverter. Initially, a real-time based computing unit with mathematical modeling of the PV array is implemented and a DC amplifier and an isolated device for DC power measurement are integrated. Several experiments were performed based on theabove concept undercertain conditions, which showed that the proposed algorithm is more effective for the PV characteristic test and grid evaluation test than the conventional method.

A Study on the Technical Standard of Micro-Inverter for Domestic Photovoltaic Power Generation (국내 태양광발전용 마이크로 인버터 기술기준에 관한 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.175-180
    • /
    • 2019
  • In order to overcome the drawbacks of low rated power of the string inverter, the necessity of micro -inverters and future development directions will be examined by comparing the power conditioner system with existing PCS using micro inverter. Currently, string inverters have been used in household solar power generation systems, and research and penetration of micro-inverters(PV-MIC) have been expanding, which can overcome the shortcomings of string inverters starting from Europe. However, in the PV inverter industry, precise technical standards, test measurement equipment and related test methods for micro-inverters(PV-MIC) are obstacles to product development. Therefore, in this paper, considering the characteristics of micro-inverter (PV-MIC), it aims to make it competitive so that it does not lag behind advanced technology change through test measurement equipment and related technical standard.

Novel Islanding Detection Method for Distributed PV Systems with Multi-Inverters

  • Cao, Dufeng;Wang, Yi;Sun, Zhenao;Wang, Yibo;Xu, Honghua
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1141-1151
    • /
    • 2016
  • This study proposes a novel islanding detection method for distributed photovoltaic (PV) systems with multi-inverters based on a combination of the power line carrier communication and Sandia frequency shift islanding detection methods. A parameter design method is provided for the novel scheme. On the basis of the designed parameters, the effect of frequency measurement errors and grid line impedance on the islanding detection performance of PV systems is analyzed. Experimental results show that the theoretical analysis is correct and that the novel method with the designed parameters has little effect on the power quality of the inverter output current. Non-detection zones are not observed, and a high degree of reliability is achieved. Moreover, the proposed islanding detection method is suitable for distributed PV systems with multi-inverters.