• Title/Summary/Keyword: PV current

Search Result 496, Processing Time 0.024 seconds

Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter (제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kang, Sung-Bum;Kim, Chul-Hwan;Lee, You-Jin;Ko, Yun-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.

PV Inverter Operation according to DC Capacitor Aging (직류 커패시터 노후화에 따른 PV 인버터 동작)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • Photovoltaic power generation is the most familiar power generation facility among new and renewable energies, and its supply began to expand about 10 years ago, and at this point, interest in solutions and technologies for system maintenance management is increasing. In particular, it is necessary to take measures to maximize the overall efficiency of the solar power generation system, whether or not there is an abnormality in the solar power generation system, and when to replace parts. The PV inverter, one element of the photovoltaic power generation system, is a power conversion system that relies on power switching devices, and DC-Link capacitors are used according to the configuration of DC/DC converters and DC-AC inverters. These DC capacitors also affect system safety (Safety) through renewable energy facilities due to the decrease in power generation of PV inverters, power loss, and increase in harmonics (THD, total distortion of AC output current) due to aging and deterioration due to long-term use. factors can be analyzed. Therefore, in this paper, the PV inverter operating characteristics according to the DC capacitor capacity state currently operating in the photovoltaic power generation system were considered, and research contents were proposed to secure the safety and reliability of renewable energy facilities.

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 태양광 PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • In this paper, the modular line-connected photovoltaic PCS (photovoltaic power conditioning system) is proposed. A step-up DC-DC converter using a active-clamp circuit and a dual series-resonant rectifier is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. The PV module current is estimated without using a DC current sensor. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed DC-DC converter and controllers is proved by experiments.

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

A Study on the Design and Selection of Switch and Diode by Analyzing Current Ringing on DCM Bi-directional Buck Converter (양방향 Buck 컨버터 DCM 구동을 위한 설계 및 전류링잉현상에 따른 스위치 및 다이오드 선정에 관한 연구)

  • Lee, Young-Dal;Choe, Gyu-Yeong;Shin, Seung-Min;Lee, Byoung-Kuk;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.14-20
    • /
    • 2012
  • This paper presents a design and topology selection of bi-direcional buck converter based on PV PCS for managing the electric power. Futhermore, Current Ringing on DCM bi-directional buck converter for soft switching is analyzed in detail. PSIM Simulation and Experiments at the various operating points show the propriety of this paper. Building on the result of simulation and experiment, a comparative analysis is performed with the approximate estimate. By use of a study, the selecion of switch and diode which improve efficiency of the overall system is appiled to DCM bi-directional buck converter based on PV PCS.

A Study on MPPT Control using the Maximum Power Balance/Unbalance Boundary Point Control (최대 전력 평형/불평형 경계점 제어를 이용한 MPPT제어에 관한 연구)

  • Koh Kang-Hoon;Kang Tae-Kyeng;Lee Hyun-Woo;Woo Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • This paper proposes a simple MPPT control scheme of a based Current-Control-Loop system that can be obtains a lot of advantage to compare with another digital control method, P&O(Perturbation and Observation) and IncCond(Incremental Conductance) algorithm, that is applied mostly a PV system. An existent method is needed an expensive processor such as DSP that calculated to change the measure power of a using current and voltage sensor at the once. Therefore, it is applied a small home power generation system that required many expenses. But, a proposed method is easy to solve the cost reduction and power unbalance Problems that it is used by control scheme to limit error of a current control of common sensor. This proposed algorithm had verified through a simulation and an experiment results on battery charger using PIC that is the microprocessor of a low price.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

HIT PV Module Performance Research for an Improvement of Long-term Reliability: A Review

  • Park, Hyeong Sik;Jeong, Jae-Seong;Park, Chang Kyun;Lim, Kyung Jin;Shin, Won Seok;Kim, Yong Jun;Kang, Jun Young;Kim, Young Kuk;Park, No Chang;Nam, Sang-Hun;Boo, Jin-Hyo;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • We report finding ways to improve the long-term reliability of PV module including the heterostructure with the intrinsic thin layer (HIT) solar cell. We point out the stability of the products of Panasonic HIT cell. We account for a brief description of the module manufacturing process to investigate the issues of each process and analyze the causes. We carried out the silicon PV module of the glass to glass type under the damp heat test around 1000 hours. However, it degraded around 7% of PV module power after 300 hours exposure in comparison with the initial status (Initial: 12.7 Watt). We investigated possible cause and solutions for the module performance to develop the long-term reliability.