• 제목/요약/키워드: PV(Photovoltaics)

검색결과 89건 처리시간 0.03초

System Modeling for Operating Efficiency Analysis of Photovoltaics (태양광발전의 운용효율분석을 위한 시스템 모델링)

  • 최연옥;조금배;백형래;정헌상;이만근;정명웅
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.380-385
    • /
    • 1997
  • The primary concern in designing any PV system is the determination of its optimum size. It is generally inadequate to use monthly or daily average insolation, and estimated number of continuous no sun days to determine array and battery capacities because the dynamic behavior of PV system and the stochastic nature of solar radiation also significantly influence the required array and storage capacity. Simulation method uses hourly meterological data and hourly load data to simulate the energy flow in a PV system, and predicts the system reliabilities under assumed array and battery sizes. Stand alone system for operating efficiency analysis of Photovoltaics system were discribed in this paper.

  • PDF

A Study on the Integrated Prefab Building Materials Depending on the Cooling Type of PV Mocdule Backside (태양전지모듈 후면의 냉각조건에 따른 조립식 건축자재와 일체화에 관한 연구)

  • Yi So-Mi;Lee Yong-Ho;Hong Sung-Min
    • New & Renewable Energy
    • /
    • 제2권2호
    • /
    • pp.9-15
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, the purpose of this research is to integrated prefab building materials depending on the cooling type of PV modules. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module temperature. From the basis of these results on the correlation of temperature and irradiation were obtained.

  • PDF

A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System) (지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로))

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • 제6권4호
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

Reliability Calculation of Distribution System including Photovoltaics Generation (태양광 발전이 도입된 배전계통에서 날씨효과를 고려한 신뢰도 산정)

  • Bae, In-Su;Lee, Il-Ryong;Lee, Jun-Kyoung;Shim, Hun;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.100-102
    • /
    • 2003
  • This paper describes a time-sequential simulation technique for the reliability evaluation of a distribution system including Photovoltaics(PV) Generation. A three-state model of a PV is presented, considering variable radiation and the forced outage rate. A test distribution system is utilized to illustrate the proposed model. The effects on the distribution system reliability of the PV parameters are examined and illustrated.

  • PDF

A Study on the Integrated Prefab Building Materials Depending on the Cooling Type of PV Module Backside (태양전지모듈 후면의 냉각조건에 따른 조립식 건축자재와 일체화에 관한 연구)

  • Yi, So-Mi;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.138-141
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre-manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, the purpose of this research is to integrated prefab building materials depending on the cooling type of PV modules. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module temperature. From the basis of these results on the correlation of temperature and irradiation were obtained.

  • PDF

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제25권1호
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

Comparative Study of the Maturing FPD Industry to the Nascent Photovoltaics Industry

  • Annis, Charles
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1208-1211
    • /
    • 2009
  • This study compares and contrasts the market size, growth rates, business cycles, supply and demand of the of the FPD and Photovoltaic (PV) industries. Using historic, market metric, cycle, capacity and other comparative analysis techniques, implications for implementing effective business strategies are formed.

  • PDF

Solar Photovoltaics Technology: No longer an Outlier

  • Kazmerski, Lawrence L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.70-70
    • /
    • 2011
  • The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is beyond a tipping point in the complex worldwide energy outlook. Truly, a revolution in both the technological advancements of solar PV and the deployment of this energy technology is underway; PV is no longer an outlier. The birth of modern photovoltaics (PV) traces only to the mid-1950s, with the Bell Telephone Laboratories' development of an efficient, single-crystal Si solar cell. Since then, Si has dominated the technology and the markets, from space through terrestrial applications. Recently, some significant shift toward technology diversity have taken place. Some focus of this presentation will be directed toward PV R&D and technology advances, with indications of the limitations and relative strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). Recent advances, contributions, industry growth, and technological pathways for transformational now and near-term technologies (Si and primarily thin films) and status and forecasts for next-generation PV (nanotechnologies and non-conventional and "new-physics" approaches) are evaluated. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, ${\ldots}$ and solar hydrogen) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. This presentation provides insights to the reasons for PV technology emergence, how these technologies have to be developed (an appreciation of the history of solar PV)-and where we can expect to be by this mid-21st century.

  • PDF

Technology Development Trends of Self-Powered Next Generation Smart Windows (PV 일체형 차세대 스마트 윈도우 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제28권12호
    • /
    • pp.753-764
    • /
    • 2015
  • Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.

Fabrication of Perforated Strings for Transparent Silicon Shingled Photovoltaic Modules (투광형 실리콘 슁글드 태양광 모듈을 위한 타공형 스트링 제작)

  • Kim, Han Jun;Park, Min-Joon;Song, Jinho;Jeong, Taewung;Moon, Daehan;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.120-123
    • /
    • 2020
  • Transparent photovoltaics (PV) are used in various applications such as building-integrated photovoltaics (BIPV). However, crystalline silicon (c-Si) is not used for developing transparent PV due to its opaque nature. Here. we fabficate the three holes in 6-inch c-Si solar cells using laser scribing process with an opening area ratio of about 6.8% for transparent c-Si solar modules. Moreover, we make the shingled strings using the perforated cells. Our 7 interconnected shingled string PV cells with 21 holes show a solar to power conversion of 5.721 W. In next work, we will fabricate a transparent c-Si PV module with perforated strings.