• Title/Summary/Keyword: PTT(Pulse Transit Time)

Search Result 39, Processing Time 0.025 seconds

Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT (PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교)

  • Kim, Chul-Seung;Moon, Ki-Wook;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.

A Study on Arterial Characterization by Photoplethysmography Analysis (용적맥파 해석에 의한 동맥 혈관 특성화 연구)

  • 한상휘;변미경;김정국;허웅
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.65-70
    • /
    • 2004
  • In this paper, we present a new methodology to analyze the characteristic of artery by using 4 channels photoplethysmograpy. The proposed parameter is a time difference of pulse transit time(PTT) between Pulse waves at finger site and at toe site. To verify the usefulness of the developed system volume pulse waves on 4 sites were measured simultaneously for total 51 normal subjects (male 26 and female 25) aged from 9 to 83 years old. And then correlations between the analysis parameters and age were evaluated by using linear regression analysis method. As the result of experiments, the change of parameter was found according to ages. The result of regression analysis about relationships between the parameter and ages for n=51, the coefficient of correlation of non-normalized data has 0.79770 in left side and 0.80599 in right side and the coefficient of correlation of normalized data by height has 0.81345 in left side and 0.81605 in right side.

The Development of Integrated Sensor System for Measuring Simultaneously ECG, PPG and PPW (심전도와 맥파 신호 검출을 위한 일체형 센서 시스템의 구현)

  • Jeon, Gye-Rok;Jung, Dong-Keun;Kim, Gi-Ryun;Shin, Bum-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.992-999
    • /
    • 2009
  • The pulse transit time(PTT), which is determined by measuring the electrocardiogram(ECG) and pulse wave, gives comprehensive information about the cardiovascular system. However, a little movement of body and/or inaccurate pressure applied to skin during the measurement of pulse wave leads to acquire incorrect results. To overcome such problem, we developed an integrated sensor system which makes it possible to measure ECG, pressure pulse wave(PPW) and photoplethysmograph(PPG) at the same time. Futhermore, we implemented a new metal electrode which enables to continuously measure ECG. We verified that both integrated sensor system and new electrode provide useful effect.

Development of Blood Pressure Estimation Methods Using The PPG and ECG Sensors (PPG 및 ECG 센서를 이용한 혈압추정 기법 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1257-1264
    • /
    • 2019
  • The traditional cuff-based method for BP(Blood Pressure) measurement is not suitable for continuous real-time BP measurement techniques. For this reason, the previous studies estimated various blood pressures by fusion with the electrocardiography (ECG) and photoplethysmogram (PPG) sensor signals. However, conventional techniques based on PPG bio-sensing measurement face many challenging issues such as noisy supply fluctuation, small pulsation, and drifting non-pulsatile. This paper proposed a novel BP estimation methods using PPG and ECG sensors, which can be derived from the relationship between PPG and ECG using PTT(Pulse Transit Time) and PWV(Pulse Wave Velocity). Unlike conventional height ratio features, which are extracted on the basis of the peaks in the PPG and ECG waveform. The proposed method can be reliably obtained even if there are missing peaks among the sensed PPG signal. The increased reliability comes from periodical estimation of the peak-to-peak interval time using ECG and PPG. After 250,000 times trials of the blood pressure measurement, the proposed estimation technique was verified with the accuracy of ±28.5% error, compared to a commercialized BP device.

Blood Pressure Estimation for Development of Wearable small Blood Pressure Monitor Fusion Algorithm Analysis (웨어러블 초소형 혈압계 개발을 위한 혈압 추정 융합 알고리즘 분석)

  • Kim, Seon-Chil;Kwon, Chan-Hoe;Park, You-rim
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.209-215
    • /
    • 2019
  • The most important personal health care in digital health care is a very important issue mainly for chronic diseases. Therefore, it is important to develop a simple wearable device for real-time health management. Existing blood pressure estimation wearable devices use PPG characteristics to analyze PTT and propose blood pressure estimation algorithms. However, the influencing factors of the algorithm such as the reproducibility of PPG, whether to apply various PTTs, and variables generated from the physical differences of the measurers are actually very complex. Therefore, in this study, the correlation between PTT, SBP, and DBP was analyzed, and it was designed to use PPG sensors for device miniaturization. The blood pressure estimation algorithm took into account differences in PPG, heart rate, and personal variables.

A Study of Ultrasound Rehabilitation Therapy: Physiological Effects by Change of Ultrasound Intensity (초음파 치료 시 초음파 세기 변화에 따른 생리적 효과 연구)

  • Kim, S.M.;Lee, M.P.;Choi, B.C.;Choi, S.H.;Bae, H.S.;Jung, H.S.;Park, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Therapeutic ultrasound which is developed for rehabilitation therapy have already been used for healing joint contracture, synechia, acute and chronic inflammatory diseases. Medical devices for pain-relief and healing using therapeutic ultrasound are actively being developed. This study measured the change of PTT with the transmitted ultrasound through the human body to find out the increase of compliance of blood vessels. Measurement method of PTT in this study is employed as useful ways to acquire physiological information of patients in the clinical case in order to measure the change of mechanical characteristics of blood vessels. This study confirmed the PTT change of rehabilitation patients through the thermal effects of ultrasound by using PTT and also found that it is possible to increase PTT by adjusting the warm water and ultrasound. The increase of PTT means the decrease of the pulse wave velocity from the cardiovascular system to the peripheral arteries. The physiological effects occurred using the warm water and ultrasound.

A Study on Estimation of Systolic Blood Pressure using PTT (PTT를 이용한 수축기 혈압의 측정에 관한 연구)

  • Park E. K.;Lee S. M.;Han Y. H.;Lee J. Y.;Kwon S. Y.;Kim I. Y.;Kim Sun I.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.605-609
    • /
    • 2004
  • Blood pressure (BP) is one of the important physiological parameters for diagnosing cardiovascula diseases by means of noninvasive method. Existing noninvasive methods for measuring arterial BP have to use cuff and difficult in measuring arterial BP continuously. Systolic blood pressure (SBP) and pulse transit time (PTT) have a kind of inverse relationship. We acquired PTT data when subjects were in relaxation and also after exercise. We performed the linear regression analysis for making the regression equations for each subject and the regression equation for all subjects. We compared the estimated SBP with the measured SBP to check the accuracy of our regression equations. From the result, the regression equations for each subject was appropriate according to the American National Standards Institute of the Association of the Advancement of Medical Instrument (ANSI/AAMI) which says that BP devices should have ±5mmHg mean of error and 8mmHg standard deviation of error. However, the regression equation for all subjects was not proper to ANSI/AAMI recommendation. The result means that, without cuff, we can continuously estimate each subject's SBP through PTT and indivisual calibration.

Radial Electrical Impedance: A Potential Indicator for Noninvasive Cuffless Blood Pressure Measurement

  • Huynh, Toan Huu;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.239-244
    • /
    • 2017
  • Noninvasive, cuffless, and continuous blood pressure (BP) monitoring is essential to prevent and control hypertension. A well-known existing method for this measurement is pulse transit time (PTT), which has been investigated by many researchers as a promising approach. However, the fundamental principle of the PTT method is based on the time interval taken by a pulse wave to propagate between the proximal and distal arterial sites. Consequently, this method needs an independent system with two devices placed at two different sites, which is a problem. Even though some studies attempted to synchronize the system, it is bulky and inconvenient by contemporary standards. To find a more sensitive method to be used in a BP measurement device, this study used radial electrical bioimpedance (REB) as a potential indicator for BP determination. Only one impedance plethysmography channel at the wrist is performed for demonstrating a ubiquitous BP wearable device. The experiment was evaluated on eight healthy subjects with the ambulatory BP monitor on the upper arm as a reference. The results demonstrated the potential of the proposed method by the correlation of estimated systolic (SBP) and diastolic (DBP) BP against the reference at $0.84{\pm}0.05$ and $0.83{\pm}0.05$, respectively. REB also tracked the DBP well with a root-mean-squared-error of $7.5{\pm}1.35mmHg$.

Analysis of Pulse Waveform and Pulse Wave Velocity of Carotid Artery and Radial Artery by Using Clip-type Pulsimeter Equipped with Permanent and Hall Device (영구자석과 홀소자가 구비된 맥진기를 이용한 경동맥과 요골동맥의 맥진파형과 맥파전달속도 분석)

  • Kim, Dong-Young;Lee, Sang-Suk;Hyeon, Seog-San;Rhee, Jin-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.146-151
    • /
    • 2014
  • The pulse waveforms of a carotid artery in the neck and a radial artery in the hand wrist were individually measured by using clip-type pulsimeter equipped with a permanent and Hall device. The pulse transit time and the pulse wave velocity obtained through comparison of two pulse waveforms were analyzed each other. A value of the pulse wave velocity was about 8.5 m/s similar to one measured by a conservative method. This result suggests that the clip-type pulsimeter as the reproducible and reliable one oriental diagnostic medical device can be predicted to any atherosclerosis state in the cardiac circulatory system.