• Title/Summary/Keyword: PTO(Power take-off)

Search Result 51, Processing Time 0.026 seconds

Exploration of power take off in wave energy converters with two-body interaction

  • Wang, Hao;Sitanggang, Khairil;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-106
    • /
    • 2017
  • The study explores a novel design of wave energy converter (WEC) that utilizes the interaction between an inside heaving vertical cylinder with an outside fixed hollow cylinder. This design originates from the oscillating water column (OWC) type WEC but replaces the pneumatic power take off (PTO) through the Wells turbine with the hydrodynamic PTO through the inside heaving cylinder. To effectively evaluate the maximum power output, the system has been modeled in the hydrodynamic software AQWA (developed by ANSYS Inc) that has accumulated extensive offshore industry users. Ranges of the PTO parameters have been examined to make sure that proper linear damping can be implemented to simulate the PTO force. Comparing the efficiency of the pneumatic PTO with the hydrodynamic PTO, it appears that the hydrodynamic PTO is more promising than the traditional Wells turbine for an OWC system.

Study of a Durability Test for Single-input Multi-output Power Take-off Gearboxes (단일입력 다출력 PTO 기어박스의 내구성시험에 관한 연구)

  • Lee, Yong Bum;Yoo, Han Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This study analyzed a life test method for a power take-off (PTO) gearbox. An engine transfers mechanical power (rotation and torque) to a hydraulic pump through a PTO Gearbox with one input shaft and three output shafts. PTO gear box durability under high loads over long time periods was tested using dynamometers. In order to reflect the rated operating conditions, power must be distributed to each output shaft, and experiments were conducted under various conditions to verify the characteristics of the distributed power. An accelerated life test was designed using speed and torque as acceleration factors. Also, efficiency tests were conducted under various load conditions. Also, a lubrication oil composition analysis was performed to analyze gearbox wear status.

A Study on the Adoption of Power Take Off Operation Mode and Fuel-Saving Effect in the Hybrid Electric Propulsion System for a Warship (전투함 하이브리드 전기추진 시스템의 PTO 운전모드 적용 및 연료절감 효과 연구)

  • Kim, So-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2019
  • Hybrid electric propulsion systems (H-EPSs) are an intermediate step for integrated full electric propulsion warships. H-EPSs are a dynamic combination of mechanical and electrical propulsion systems to achieve the required mission performances. The system modes could adapt to meet the requirement of the various operation conditions of a warship. This paper presents a configuration and operating modes of H-EPSs considering the operation conditions of a destroyer class warship. The system has three propulsion modes, namely, motoring mode, generating mode [power take off (PTO) mode], and mechanical mode. The PTO mode requires a careful fuel efficiency analysis because the fuel consumption rate of propulsion engines may be low compared with the generator's engines depending on the loading power. Therefore, the calculation of fuel consumption according to the operating modes is performed in this study. Although the economics of the PTO mode depends on system cases, it has an advantage in that it ensures the reliability of electric power in case of blackout or minimum generator operation.

Development and Performance Test of Hydraulic PTO for 50㎾ Class Rotating Body Type Wave Energy Converter (50㎾급 동체회전형 파력발전시스템 유압식 전력변환장치 개발 및 성능시험)

  • Choi, Kyung-Shik;Yang, Dong-Soon;Park, Shin-Yeol;Cho, Byung-Hak
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.99-106
    • /
    • 2011
  • 50kW급 동체회전형 파력발전시스템(WEC;wave energy converter)의 전력변환장치(PTO; power take-off)를 설계 제작한 후 성능시험을 하였다. 파력발전시스템은 2개의 실린더형 동체가 회전관절로 연결된 구조로 수면의 반정도 잠기는 구조로 되어있다. 파랑에 의해 유도된 회전관전의 움직임이 유압실린더에 힘을 가해주며, 유압실린더는 고압의 작동유를 축압기를 경유하여 발전기에 체결된 유압모터로 공급한다. 유압식 PTO은 유압실린더가 왕복운동하는 움직임을 이용하여 고품질의 전력을 생산하는데 효과전인 수단을 제공한다. 파력발전시스템의 경제성은 PTO의 에너지 변환 효율에 크게 의존한다. 발전기를 AC 380V 전력계통에 연계시킨 후, 발전기에서 나오는 출력이 5, 20, 35, 43kW 일때 PTO 전체와 개별기기에 대한 효율을 측정하였다. 본 논문에서 유압식 PTO시스템의 설계에 대해 설명하였으며 효율 향상에 초점을 맞추어 PTO 성능대해 분석하였다.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

A Study on the Characteristic of Power Transmission by the Power-take-off(P.T.O.) of farm Tractor (Tractor 동력취출장치(P.T.O.)의 동력전달구조에 관한 연구)

  • 송현갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3089-3095
    • /
    • 1973
  • The power transmission to the traction devices may be very important for the tractor performance and therefore this system has been studied very much in the past. On the other hand, the PTO(Power-take-off) has been considered as an accessary on the tractor with a few work for its power transmission. Because of increased use of PTO operation in various kind of farming operations in recent years, the function of PTO may become such important as the traction facilities. In this study, the power transmission characteristics of PTO drive was analyzed theoretically and some experimental work was done to study on it. The results of the study are as follows: 1) The most stable condition of PTO work was obtained when the intersection angle of the two curves for driving and driven torques was about ${\pi}/2$. 2) To obtain the most stable operation it is better to use both the speed control and the full control together. 3) Six steps differential gear may not be enough to use the PTO power smoothly. It is thought that the three steps differential gear on the shaft of PTO may be necessary additionally for a smooth operation. 4) When the traction facilities and the PTO are used at the same time, the torque of crank shaft becomes Tt + Tp, and the high efficiency and good stability of word will be obtained with the small variation of driving speed. 5) When the tractor was operated with 75% of the rated horse power and 70% of maximum speed, the best thermal efficiency could be obtained. 6) The most dangerous sound for human occured at the rated speed of PTO and tus it may be necessary to control the dangerous noise.

  • PDF

A Study on the Application of Carbon Fiber Reinforced Plastics to PTO Shafts for Aircrafts (탄소섬유 강화 복합재료의 항공기용 PTO 샤프트 적용에 관한 연구)

  • Jeong, Kwang Il;Kim, Wonki;Jeong, Jae-Moon;Oh, Jaehyung;Bang, Yun Hyuk;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.380-386
    • /
    • 2021
  • This paper aims to improve the critical speed of power-take-off (PTO) shafts by using carbon fiber reinforced plastics (CFRPs). The PTO shaft was designed with titanium-CFRPs hybrid structure in order to compensate the low shear strength of CFRPs. Based on the requirements for PTO shafts, the dimensions of PTO shafts were determined through a parametric study. To evaluate the performance of the PTO shaft, a vibration test, a static torsion test, and a torsion durability test were performed. In the vibration test, the critical speed of PTO shafts was 20570 rpm, which was 7.5% higher than that of titanium shafts. Additionally, it was confirmed that the maximum allowable torque of the PTO shaft was 2300 N·m. Finally, under repeated load in the range of 11.3 to 113 N·m, the fatigue failure in the PTO shaft did not occur up to 106 cycles.

MOTORCYCLE POWER TAKE-OFF FOR AGRICULTURE

  • Quick, G.R.;Paita, B.L.;Salazar, G.C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.211-216
    • /
    • 1993
  • The successful design of several types of motorcycle power take off (M-pto) has opened possibilities for the use of a range of attachments matched to the power of the more popular motorcycle models in Asia. This paper reports on the implementation of the motorcycle power-take-off for low-speed and high speed applications utilizing some existing IRRI machines.

  • PDF

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

Analysis of the load distribution and contact safety factor of PTO gears of a 71 kW class agricultural tractor

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yeon-Soo;Lee, Nam-Gyu;Kim, Nam-Hyeok;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.327-335
    • /
    • 2020
  • The purpose of this study was to analyze the load distribution and contact safety factor for the power take off (PTO) gear of a 71 kW class agricultural tractor. In this study, a simulation model of the PTO gear-train was developed using Romax DESGINER. The face load factor and contact safety factor were calculated using ISO 6336:2006. The simulation time was set at 2,736 hours considering the lifetime of the tractor, and the simulation was performed for each PTO gear stage at the engine rated power conditions. As a result of the simulation, the face load factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.644, 1.632, and 1.341, respectively. The contact safety factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.185, 1.216, and 1.458, respectively. As the PTO gear stage was increased, the face load factor decreased, and the contact safety factor increased. The load distributions for all the PTO gears were concentrated to the right of the tooth width. This causes stress concentrations and shortens the lifespan of the gears. Therefore, it is necessary to improve the face load factor and the contact safety factor with macro-geometry and micro-geometry.